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Rough sets are efficient for data pre-processing in data mining. However, some important problems such
as attribute reduction in rough sets are NP-hard, and the algorithms to solve them are almost greedy
ones. As a generalization of the linear independence in vector spaces, matroids provide well-established
platforms for greedy algorithms. In this paper, we apply matroids to rough sets through an isomorphism
from equivalence relations to 2-circuit matroids. First, a matroid is induced by an equivalence relation.
Several equivalent characterizations of the independent sets of the induced matroid are obtained
through rough sets. Second, an equivalence relation is induced by a matroid. The relationship between
the above two inductions is studied. Third, an isomorphism from equivalence relations to 2-circuit
matroids is established, which lays a sound foundation for studying rough sets using matroidal
approaches. Finally, attribute reduction is equivalently formulated with rank functions and closure oper-
ators of matroids. These results show the potential for designing attribute reduction algorithms using
matroidal approaches.
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1. Introduction

With the advent of huge data, knowledge analysis and disposal
technology become increasingly important. As one of those impor-
tant techniques, rough set theory proposed by Pawlak [24] attracts
much research interest. In theory, axiomatic systems have been
constructed [1,28,33,40,44], generalization works have been done
[26,27,37,41,45] and connections with other theories and methods
have been built [5,6,39,43]. In application, rough set theory has
been widely used in attribute reduction [2,20,25,38] and rule
extraction [4,23,29].

However, many important problems including attribute reduc-
tion in rough sets are NP-hard. Hence those algorithms for them
are almost greedy ones [7–9,20], especially heuristic ones [10,19,
21,30]. In order to establish better mathematical structures and
seek efficient approaches for those problems, rough set theory
has been combined with other theories, such as topology [12,15,
42], lattices [18,31], fuzzy sets [11,22,34] and matroids [16,32,
46]. Specifically, the matroid [14,17] borrows extensively from lin-
ear algebra and graph theory, so it is an important mathematical
structure with high applicability. Matroids have been applied to di-
verse fields such as algorithm design, combinatorial optimization
ll rights reserved.

u).
and integer programming. Especially, they provide well-estab-
lished platforms for greedy algorithms. Therefore, the establish-
ment of matroidal structures of rough sets may be much helpful
for those NP-hard problems.

In this paper, a matroidal structure of rough sets is con-
structed, then attribute reduction of information systems is
equivalently represented by matroidal approaches. First, a mat-
roid is induced by an equivalence relation through the circuit
axioms, and several equivalent formulations of the independent
sets of the matroid are provided using rough sets. Second, an
equivalence relation is induced by a matroid. The relationship
between those two inductions is studied, and a type of matroid,
namely 2-circuit matroid, is defined. An isomorphism from
equivalence relations to 2-circuit matroids is constructed, which
provides a basis for investigating rough sets through matroids.
Third, the lower and upper approximations in rough sets are
equivalently represented with matroidal approaches. Fourth,
attribute reduction of information systems is also characterized
by matroids induced by equivalence relations generated by sev-
eral attributes.

The rest of this paper is organized as follows. Section 2 reviews
some fundamental concepts about rough sets, information systems
and matroids. In Section 3, a matroid is induced by an equivalence
relation. Section 4 studies rough sets by matroids induced by
equivalence relations. In Section 5, information systems are inves-
tigated in matroidal structures. Finally, Section 6 concludes this pa-
per and points out further works.

http://dx.doi.org/10.1016/j.knosys.2012.06.006
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2. Basic definitions

This section recalls some fundamental definitions related to
rough sets, information systems and matroids.

2.1. Rough set model

Rough set theory provides a systematic approach to data pre-
processing in data mining. In information/decision systems, any
attribute subset is characterized by an equivalence relation. A
universe together with an equivalence relation on the universe
forms an approximation space.

Definition 1 (Approximation space [36]). Let U be a nonempty and
finite set called universe. Let R be an equivalence relation on U, i.e.,
R is reflexive, symmetric and transitive. The ordered pair ðU;RÞ is
called an approximation space.

In rough sets, a pair of approximation operators are used to de-
scribe an object. In the following definition, a widely used pair of
approximation operators are introduced.

Definition 2 (Approximation operator [36]). Let R be an equiva-
lence relation on U. A pair of approximation operators
R;R : 2U ! 2U , are defined as follows: for all X # U,

RðXÞ ¼ fx 2 UjRNðxÞ# Xg;
RðXÞ ¼ fx 2 UjRNðxÞ

\
X – ;g;

where RNðxÞ ¼ fy 2 UjxRyg. They are called the lower and upper
approximation operators with respect to R, respectively.

In an approximation space, a set is called a precise set if it can
be precisely described by an equivalence relation; otherwise, it is
called a rough set.

Definition 3 (R-precise and R-rough set [36] ). Let R be an
equivalence relation on U. For all X # U, if RðXÞ ¼ RðXÞ, then we
say X is a R-precise set; otherwise, we say X is a R-rough set.
2.2. Information system

In many real world applications, information and knowledge
are stored, represented and observed in information systems,
where a set of objects is characterized by a set of attributes. From
a theoretical point of view, an information system refers to two-
tuples consisting of the considered objects called universe, and
the attributes used to represent those objects.

Definition 4 (Information system [13]). An information system is
an ordered pair IS ¼ ðU;AÞ, where U is a nonempty finite set of
objects and A is a nonempty finite set of attributes such that
a : U ! Va for all a 2 A, where Va is called the value set of a.

The following definition shows that any attribute subset is
represented by an equivalence relation, which lays a sound foun-
dation for investigating information systems using rough set
models.

Definition 5 (Indiscernibility relation [13] ). Let IS ¼ ðU;AÞ be an
information system. For all B # A,

INDðBÞ ¼ fðx; yÞ 2 U � Uj8b 2 B; bðxÞ ¼ bðyÞg

is called the indiscernibility relation induced by B, simply denoted
by B.
In fact, the relation induced by any attribute subset is an equiv-
alence relation. Therefore, the universe together with an equiva-
lence relation induced by some attributes forms an
approximation space. Therefore, rough set model is available to
study information systems.

Proposition 1 [13]. Let IS ¼ ðU;AÞ be an information system. For all
B # A; INDðBÞ is an equivalence relation on U.

Large scale data contain many redundant data. And there is
much need to remove those redundant data in order to obtain use-
ful data in an efficient manner. For this purpose, reducts of an
information system are defined.

Definition 6 (Reduct [13]). Let IS ¼ ðU;AÞ be an information sys-
tem. For all B # A;B is called a reduct of IS, if it satisfies the
following two conditions:

(1) For all b 2 B; INDðBÞ – INDðB� fbgÞ;
(2) INDðBÞ ¼ INDðAÞ.

2.3. Matroids

Matroids are algebraic structures that generalize linear indepen-
dence in vector spaces. They have a variety of applications in inte-
ger programming, combinatorial optimization, algorithm design,
and so on. In the following definition, one of the most valuable def-
initions of matroids is presented in terms of independent sets.

Definition 7 (Matroid [14])). A matroid is an ordered pair
M ¼ ðU; IÞ where U (the ground set) is a finite set, and I (the
independent sets) a family of subsets of U with the following
properties:

(I1) ; 2 I;
(I2) If I 2 I, and I0 # I, then I0 2 I;
(I3) If I1; I2 2 I, and jI1j < jI2j, then there exists u 2 I2 � I1 such

that I1
S
fug 2 I, where jIj denotes the cardinality of I.

Matroids developed mainly from a comprehensive research on
the properties of linear independence and dimension in vector
spaces. In order to illustrate the fact that linear algebra is an origi-
nal source of matroid theory, an example is provided from the
viewpoint of the linear independence in vector spaces.

Example 1. Let U ¼ fa1; a2; a3; a4g where a1 ¼ ½100�T ; a2 ¼
½010�T ; a3 ¼ ½001�T and a4 ¼ ½�10� 1�T . Denote I ¼ fX # UjX are
linearly independent}, i.e., I ¼ f;; fa1g; fa2g; fa3g; fa4g; fa1; a2g;
fa1; a3g; fa1; a4g; fa2; a3g; fa2; a4g; fa3; a4g; fa1; a2; a3g; fa1; a2; a4g;
fa2; a3; a4gg. Then M ¼ ðU; IÞ is a matroid.

The above example shows that the independent set of a matroid
is a generalization of the linearly independent set; in other words,
matroid theory and linear algebra coincide with each other when
the independence is degenerated to the linear independence.

In order to indicate that graph theory is another original source
of matroids, an example is presented from the cycle of a graph.

Example 2. Let G ¼ ðV ; EÞ be the graph as shown in Fig. 1. Denote
I ¼ fI # EjI does not contain a cycle of Gg, i.e., I ¼ f;; fa1g; fa2g;
fa3g; fa4g; fa1; a2g; fa1; a3g; fa1; a4g; fa2; a3g; fa2; a4g; fa3; a4g; fa1;

a2; a4g; fa1; a3; a4g; fa2; a3; a4gg. Then M ¼ ðE; IÞ is a matroid,
where E ¼ fa1; a2; a3; a4g.

If a subset of the ground set is not an independent set of a mat-
roid, then it is called a dependent set of the matroid. Based on the
dependent set, we introduce the circuit of a matroid. For this
purpose, several denotations are presented.



Fig. 1. A graph.

S. Wang et al. / Knowledge-Based Systems 36 (2012) 155–161 157
Definition 8 [14]. Let A be a family of subsets of U. One can denote

UppðAÞ ¼ fX # Uj9A 2 A; suchthat A # Xg;

LowðAÞ ¼ fX # Uj9A 2 A; suchthat X # Ag;

MaxðAÞ ¼ fX 2 Aj8Y 2 A;X # Y ) X ¼ Yg;

MinðAÞ ¼ fX 2 Aj8Y 2 A; Y # X ) X ¼ Yg:
The dependent set of a matroid generalizes the linear depen-

dence in vector spaces and the cycle in graphs. The circuit of a
matroid is a minimal dependent set.
Definition 9 (Circuit [14]). Let M ¼ ðU; IÞ be a matroid. A minimal
dependent set in M is called a circuit of M, and we denote the
family of all circuits of M by CðMÞ, i.e., CðMÞ ¼ MinðIcÞ, where Ic is
the complement of I in 2U .

An example is provided to illustrate that the circuit of a matroid
generalizes the cycle of a graph.

Example 3 (Continued from Example 2). The family of circuits of
M ¼ ðE; IÞ is CðMÞ ¼ ffa1; a2; a3gg. In fact, a1; a2 and a3 form a cycle
of the graph as shown in Fig. 1.

The above example presents that matroids and graphs coincide
with each other when the circuit of a matroid is degenerated to the
cycle of a graph. The following proposition shows that a matroid
can be defined from the viewpoint of circuits.

Proposition 2 [Circuit axiom [14]]. Let C be a family of subsets of U.
Then there exists M ¼ ðU; IÞ such that C ¼ CðMÞ iff C satisfies the
following three conditions:

(C1) ; R C;
(C2) If C1;C2 2 C and C1 # C2, then C1 ¼ C2;
(C3) If C1;C2 2 C;C1 – C2 and u 2 C1

T
C2, then there exists C3 2 C

such that C3 # C1
S

C2 � fug.

The dimension of a vector space and the rank of a matrix are
quite useful concepts in linear algebra. The rank function of a mat-
roid is a generalization of these two concepts.

Definition 10 (Rank function [14]). Let M ¼ ðU; IÞ be a matroid. The
rank function rM of M is defined as rMðXÞ ¼ maxfjIj : I # X, and
I 2 Ig for all X # U. rMðXÞ is called the rank of X in M.

Based on the rank function of a matroid, one can define the clo-
sure operator, which reflects the dependency between a set and
elements.

Definition 11 (Closure [14] ). Let M ¼ ðU; IÞ be a matroid. The
closure operator clM of M is defined as clMðXÞ ¼ fu 2 UjrMðXÞ ¼
rMðX

S
fugÞg for all X # U. clMðXÞ is called the closure of X in M.
We say a subset of the ground set is a closed set of a matroid if
its closure is equal to itself. In other words, a closed set of a matroid
is a fixed point of the closure operator.
Definition 12 (Closed set [14]). Let M ¼ ðU; IÞ be a matroid. For all
X # U;X is called a closed set of M if clMðXÞ ¼ X.

The following closure axiom shows the connection between
matroids and closure operators. In fact, a matroid uniquely deter-
mines a closure operator, and vice versa.

Proposition 3 [Closure axiom [14]]. Let cl : 2U ! 2U be an operator.
Then there exists a matroid M ¼ ðU; IÞ such that cl ¼ clM iff cl satisfies
the following conditions: (CL1) For all X # U;X # clðXÞ;(CL2) If
X # Y # U, then clðXÞ# clðYÞ;(CL3) For all X # U; clðclðXÞÞ ¼ clðXÞ;
(CL4) For all x; y 2 U, if y 2 clðX

S
fxgÞ � clðXÞ, then x 2 clðX

S
fygÞ.

This subsection presents the powerful axiomatic system of mat-
roids, which suggests strong compatibility of matroid theory with
other theories.
3. An isomorphism from equivalence relations to 2-circuit
matroids

In this section, we establish a matroidal structure of rough sets
and an isomorphism from equivalence relations to a type of mat-
roids. First of all, we propose approaches to generating a matroid
from an equivalence relation as well as to inducing an equivalence
relation from a matroid.
3.1. Matroid induced by equivalence relation

This subsection induces a matroid by an equivalence relation,
and provides several equivalent formulations of the independent
sets of the matroid. Through the circuit axiom of matroids, those
sets with only two elements which have a relationship with each
other form a matroid.
Definition 13. Let R be an equivalence relation on U. We define a
family CðRÞ of subsets of U as follows: for all x; y 2 U and x – y,
ðx; yÞ 2 R() fx; yg 2 CðRÞ:
Example 4. Let U ¼ fa; b; c; d; eg and R ¼ fða; aÞ; ðb; bÞ; ðc; cÞ; ðd; dÞ;
ðe; eÞ; ða; bÞ; ðb; aÞ; ðc; dÞ; ðd; cÞ; ðc; eÞ; ðe; cÞ; ðd; eÞ; ðe; dÞg. It is straight-
forward that R is an equivalence relation on U. Then
CðRÞ ¼ ffa; bg; fc; dg; fc; eg; fd; egg.

In fact, the family of subsets of the universe induced by an
equivalence relation in compliance with the above definition satis-
fies the circuit axiom. In other words, it determines a matroid.

Proposition 4. Let R be an equivalence relation on U. Then CðRÞ
satisfies (C1), (C2) and (C3) of Proposition 2.
Proof. (C1) and (C2) are straightforward. Let C1;C2 2 CðRÞ;C1 – C2

and x 2 C1
T

C2. Without losing generality, let C1 ¼ fx; yg and
C2 ¼ fx; zg. We know xRy and xRz, which imply that yRz because
R is an equivalence relation. Therefore C3 ¼ fy; zg 2 CðRÞ, and
C3 # C1

S
C2 � fxg. This completes the proof. h

According to Proposition 2, there exists a matroid on the uni-
verse such that CðRÞ is the family of its circuits. Therefore, we
establish a matroidal structure for any approximation space.
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Definition 14. Let R be an equivalence relation on U. The matroid
whose circuit set is CðRÞ is denoted by MðRÞ ¼ ðU; IðRÞÞ. We say
MðRÞ ¼ ðU; IðRÞÞ is the matroid induced by R, where IðRÞ ¼
ðUppðCðRÞÞÞc .

The matroid induced by an equivalence relation can be charac-
terized from the viewpoint of rough sets. The following three prop-
ositions present three equivalent formulations of the independent
sets of the matroid.

Proposition 5. Let R be an equivalence relation on U and
MðRÞ ¼ ðU; IðRÞÞ the matroid induced by R. Then IðRÞ ¼ fX # Uj8x; y
2 X; x – y) ðx; yÞ R Rg.
Proof. We only need to prove ðUppðCðRÞÞÞc ¼ fX # Uj8x; y 2 X;
x – y) ðx; yÞ R Rg. For all X R fX # Uj8x; y 2 X; x – y)
ðx; yÞ R Rg, then there exist x; y 2 X and x – y such that ðx; yÞ 2 R,
i.e., fx; yg 2 CðRÞ. Since fx; yg# X; X 2 UppðCðRÞÞ, which implies
X R ðUppðCðRÞÞÞc . Hence ðUpp ðCðRÞÞÞc # fX # Uj8x; y 2 X;
x – y) ðx; yÞ R Rg. Conversely, for all X R ðUppðCðRÞÞÞc , i.e.,
X 2 UppðCðRÞÞ, then there exists CX 2 CðRÞ such that CX # X. Sup-
pose CX ¼ fx; yg, then ðx; yÞ 2 R, which implies X R fX # Uj8x;
y 2 X; x – y) ðx; yÞ R Rg. Hence fX # Uj8x; y 2 X; x – y) ðx; yÞ
R Rg# ðUppðCðRÞÞÞc. This completes the proof.
Example 5. (Continued from Example 4). The matroid induced by
R is MðRÞ ¼ ðU; IðRÞÞ where U ¼ fa; b; c; d; eg and IðRÞ ¼ f;; fag; fbg;
fcg; fdg; feg; fa; cg; fa; dg; fa; eg; fb; cg; fb; dg; fb; egg.

The independent sets of the matroid induced by an equivalence
relation can also be characterized by the cardinalities of sets.

Proposition 6. Let R be an equivalence relation on U and
MðRÞ ¼ ðU; IðRÞÞ the matroid induced by R. Then IðRÞ ¼
fX # Uj8x 2 U; jX

T
RNðxÞj 6 1g where RNðxÞ ¼ fy 2 UjxRyg.
Proof. According to Proposition 5, we only need to prove
fX #Uj8x2U; jX

T
RNðxÞj61g¼ fX #Uj8x;y2X;x – y) ðx; yÞ R Rg.

For all X 2 fX # Uj8x 2 U; jX
T

RNðxÞj 6 1g; x; y 2 X and x – y,
then ðx; yÞ R R. In fact, if there exist x; y 2 X; x – y such that
ðx; yÞ 2 R, then fx; yg# RNðxÞ ¼ fy 2 UjxRyg. Thus jX

T
RNðxÞjP 2,

which is contradictory with jX
T

RNðxÞj 6 1. Hence X 2 fX # Uj8x;
y 2 X; x – y) ðx; yÞ R Rg; in other words, fX # Uj8x 2 U;
jX
T

RNðxÞj 6 1g# fX # Uj8x; y 2 X; x – y) ðx; yÞ R Rg. Conversely,
for all X 2 fX # Uj8x; y 2 X; x – y) ðx; yÞ R Rg; y R RNðxÞ for all
y 2 X and x – y, then jX

T
RNðxÞj 6 1 for all x 2 X. We now prove that

jX
T

RNðxÞj 6 1 for all x 2 Xc. If there exists y 2 Xc such that
jX
T

RNðyÞjP 2, then we suppose fz; hg# X
T

RNðyÞ, hence
ðy; zÞ 2 R and ðy;hÞ 2 R, which imply ðz;hÞ 2 R. Since fz;hg# X, it is
contradictory that ðx; yÞ R R for all x; y 2 X and x – y. Therefore,
fX #Uj8x;y2X;x – y)ðx;yÞ R Rg#fX #Uj8x2U; jX

T
RNðxÞj 6 1g.

In the following proposition, we connect the approximations
with the independent sets of the matroid induced by an equiva-
lence relation. For this purpose, two lemmas are presented.

Lemma 1. Let R be an equivalence relation on U. Then
MaxfX #Uj8x2U; jX

T
RNðxÞj61g¼fX #Uj8x2U; jX

T
RNðxÞj ¼1g.
Lemma 2. Let R be an equivalence relation on U. Then LowðMaxfX #Uj
8x2U; jX

T
RNðxÞj61gÞ¼ fX #Uj8x2U; jX

T
RNðxÞj61g.

An equivalent formulation of the independent sets of the mat-
roid induced by an equivalence relation is provided from the view-
point of the upper approximation. In fact, a subset of a universe is
an independent set if and only if it is contained in another set
whose upper approximation is equal to the universe, and which
is minimal.

Proposition 7. Let R be an equivalence relation on U and
MðRÞ ¼ ðU; IðRÞÞ the matroid induced by R. Then
IðRÞ ¼ LowðMinfX # UjRðXÞ ¼ UgÞ.
Proof. According to Proposition 6 and Lemma 1, we only need to
prove MinfX #UjRðXÞ¼Ug¼fX #Uj8x2U; jX

T
RNðxÞj¼1g, because

LowðMinfX #UjRðXÞ¼UgÞ¼LowðfX #Uj8x2U; jX
T

RNðxÞj¼1gÞ¼
LowðMaxfX #Uj8x2U; jX

T
RNðxÞj61gÞ¼fX #Uj8x2U; jX

T
RNðxÞj6

1g¼ IðRÞ. In fact, for all X2fX #Uj8x2U; jX
T

RNðxÞj¼1g, since for
all x2U; jX

T
RNðxÞj¼1 which implies X

T
RNðxÞ–;;RðXÞ¼U. For

all x2X, since jX
T

RNðxÞj¼1;ðX�fxgÞ
T

RNðxÞ¼; and RðX�fxgÞ
#U�fxg which implies RðX�fxgÞ–U. Hence X2MinfX #

UjRðXÞ¼Ug. Therefore, fX #Uj8x2U; jX
T

RNðxÞj¼1g#MinfX #

UjRðXÞ¼Ug. Conversely, for all X2MinfX #UjRðXÞ¼Ug;RðXÞ¼U,
then for all x2U;X

T
RNðxÞ–;, which implies jX

T
RNðxÞjP1. If

there exists y2U such that jX
T

RNðyÞj>1, i.e., jX
T

RNðyÞjP2, then
we suppose fg;hg#X

T
RNðyÞ, so RðX�fggÞ¼U, which is contradic-

tory with X2MinfX #UjRðXÞ¼Ug. Hence X2fX #Uj8x2U; jX
T

RN
ðxÞj¼1g. Therefore, MinfX #UjRðXÞ¼Ug#fX #Uj8x2U; jX

T
RNðxÞ

j¼1g. This completes the proof. h

The above proposition shows an explanation of the upper
approximation using independent sets of a matroid. Similarly, ow-
ing to the duality, the independent sets of the matroid induced by
an equivalence relation can also be represented by the lower
approximations.

Corollary 1. Let R be an equivalence relation on U and
MðRÞ ¼ ðU; IðRÞÞ the matroid induced by R. Then IðRÞ ¼ Low
ðMinfX # UjRðXcÞ ¼ ;gÞ.
Proof. According to Proposition 7, IðRÞ ¼ LowðMinfX # UjRðXÞ
¼ UgÞ ¼ LowðMinfX # Uj½RðXcÞ�c ¼ UgÞ ¼ LowðMinfX # UjRðXcÞ
¼ ;gÞ. h

These equivalent formulations of the independent sets of the
matroid induced by an equivalence relation lay sound foundations
for investigating rough sets from a matroidal point of view.

3.2. Equivalence relation induced by matroid

In this subsection, we consider a converse question, that is, how
a matroid induces an equivalence relation, to establish a deep cor-
respondence between equivalence relations and matroids.

Definition 15. Let M ¼ ðU; IÞ be a matroid. One can define a
relation RðMÞ on U as follows: for all x; y 2 U,

ðx; yÞ 2 RðMÞ () x ¼ yor9C 2 CðMÞsuchthatfx; yg# C:
In fact, according to the above definition, the relation induced

by a matroid is an equivalence relation.
Proposition 8. Let M ¼ ðU; IÞ be a matroid. Then RðMÞ is an
equivalence relation on U.

Definition 15 and Proposition 8 show an induction of equivalence
relation by a matroid. SubSection 3.1 proposes an approach to
inducing a matroid from an equivalence relation. The following
proposition builds the connection between these two inductions.
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Proposition 9. Let R be an equivalence relation on U. Then
RðMðRÞÞ ¼ R.

The above proposition indicates that these two inductions are
converse. In fact, a close relationship between equivalence rela-
tions and matroids can be further reflected. For this reason, a type
of matroid called 2-circuit matroid is defined.

Definition 16 (2-circuit matroid). Let M ¼ ðU; IÞ be a matroid. If for
all C 2 CðMÞ; jCj ¼ 2, then we say M is a 2-circuit matroid.

In fact, the matroid induced by an equivalence relation is a
2-circuit matroid.

Proposition 10. Let R be an equivalence relation on U. Then
MðRÞ ¼ ðU; IðRÞÞ is a 2-circuit matroid.

The following proposition also shows that these two inductions
are converse. According to Proposition 8, any matroid induces an
equivalence relation, and the matroid induced by the equivalence
relation is equal to the original matroid.

Proposition 11. Let M ¼ ðU; IÞ be a 2-circuit matroid. Then
MðRðMÞÞ ¼ M.

The above results establish a one-to-one correspondence be-
tween equivalence relations and 2-circuit matroids. Furthermore,
we construct an isomorphism from equivalence relations to 2-cir-
cuit matroids. For this purpose, the isomorphism is introduced.

Definition 17 (Isomorphism [35]). Let ðA;}Þ and ðB; �Þ be two
closed algebraic systems. If there exists a bijection h from A to B

such that

hðA1}A2Þ ¼ hðA1Þ � hðA2Þ for all A1;A2 2 A;

then we say h is an isomorphism, and A;B are isomorphic, denoted
by A ffi B.

We consider two closed algebraic systems ðR;
T
Þ where R is the

family of all equivalence relations on U, and ðC;
T
Þ where C is the

family of circuit sets of all 2-circuit matroids. A mapping from one
algebra system to another is constructed.

Definition 18. An operator h : R! C is defined as follows: for all
R 2 R,
hðRÞ ¼ CðRÞ:
The mapping constructed in the above definition is an isomor-
phism; in other words, these two algebra systems are isomorphic.
Theorem 1. h is an isomorphism from R to C, i.e., R ffi C.
Proof. First, we prove h is a bijection, that is, h is injective and sur-
jective. It is straightforward that h is injective. For all C 2 C, we
suppose R ¼ RðMÞ, where M expresses the matroid whose circuit
set is C. According to Proposition 11, MðRðMÞÞ ¼ M; in other words,
the circuit set of MðRðMÞÞ is C. Thus h is surjective. Second, we
prove hðR1

T
R2Þ ¼ hðR1Þ

T
hðR2Þ, i.e., CðR1

T
R2Þ ¼ CðR1Þ

T
CðR2Þ for

all R1;R2 2 R. For all fx; yg 2 CðR1
T

R2Þ, then ðx; yÞ 2 R1
T

R2. Thus
ðx; yÞ 2 R1 and ðx; yÞ 2 R2, i.e., fx; yg 2 CðR1Þ and fx; yg 2 CðR2Þ.
Hence CðR1

T
R2Þ# CðR1Þ

T
CðR2Þ. Conversely, for all fx; yg 2 CðR1ÞT

CðR2Þ; fx; yg 2 CðR1Þ and fx; yg 2 CðR2Þ, i.e., ðx; yÞ 2 R1 and
ðx; yÞ 2 R2, then ðx; yÞ 2 R1

T
R2, i.e., fx; yg 2 CðR1

T
R2Þ. Hence

CðR1Þ
T

CðR2Þ# CðR1
T

R2Þ. This completes the proof.
In general, isomorphic mathematical structures can be regarded

as the similarity. Therefore, through the isomorphism from equiv-
alence relations to 2-circuit matroids, the study for rough sets is
converted to the study for 2-circuit matroids.
4. Matroidal approaches to rough sets

This section provides equivalent formulations of some impor-
tant concepts in rough sets with matroidal approaches. Specifically,
the upper approximation operator is characterized by the closure
operator of the matroid induced by an equivalence relation. For
this purpose, a lemma is presented.

Lemma 3 [14]. Let M ¼ ðU; IÞ be a matroid. Then for all X # U,

clMðXÞ ¼ X
[
fu 2 Uj9C 2 CðMÞ; suchthatu 2 C # X

[
fugg:

The following proposition establishes a relationship between the
upper approximation operator with respect to an equivalence rela-
tion and the closure operator of the corresponding matroid.
Proposition 12. Let R be an equivalence relation on U. Then
RðXÞ ¼ clMðRÞðXÞ for all X # U.
Proof. According to Definition 14 and Lemma 3, clMðRÞðXÞ ¼
X
S
fx 2 Uj9C 2 CðRÞ, such that x 2 C # X

S
fxgg ¼ X

S
fx 2 Uj9y

2 X; xRy, such that fx; yg# X
S
fxgg ¼ fx 2 Uj9y 2 X; xRyg ¼

fx 2 UjRNðxÞ
T

X – ;g ¼ RðXÞ. This completes the proof.
The above proposition shows that the upper approximation

operator is equal to the closure operator of the matroid induced
by an equivalence relation. Similarly, the lower approximation
operator can also be represented by the closure operator.

Corollary 2. Let R be an equivalence relation on U. Then
RðXÞ ¼ ½clMðRÞðXcÞ�c for all X # U.
Corollary 3. Let R be an equivalence relation on U. Then for all
x 2 U;RðfxgÞ ¼ RNðxÞ ¼ clMðRÞðfxgÞ.

Furthermore, some other concepts related to the approximation
operators are also described by the closure operator. For example,
the precise set in rough sets is characterized by the closed set of
the matroid.

Corollary 4. Let R be an equivalence relation on U. For all X # U;X is a
R-precise set iff X is a closed set of MðRÞ.

Similarly, the rough set can be represented by the closed set of
the matroid. In fact, a subset of a universe is a rough set if and only
if it is not a closed set of the matroid.

Corollary 5. Let R be an equivalence relation on U. For all X # U;X is a
R-rough set iff X is not a closed set of MðRÞ.

We can also use the closure operator to represent a relation
when it is an equivalence relation. In fact, a relation is an equiva-
lence one if and only if the upper approximation operator satisfies
the closure axioms.

Proposition 13. Let R be a relation on U. Then R is an equivalence
relation iff R satisfies (CL1), (CL2), (CL3) and (CL4) of Proposition 3,
where RðXÞ ¼ fx 2 UjRNðxÞ

T
X – ;g for all X # U and RNðxÞ ¼

fy 2 UjxRyg.
Proof. ()): According to Proposition 12, it is straightforward. (():
Since R satisfies (CL1) and (CL3), according to literature [41], R is
reflexive and transitive. Since R satisfies (CL4), for all x; y 2 U;
y 2 RðX

S
fxgÞ � RðXÞ; y 2 RðX

S
fygÞ. For all ðx; yÞ 2 R; y 2 RNðxÞ,

i.e., x 2 RðfygÞ ¼ Rðfyg
S
;Þ � Rð;Þ, then y 2 Rðfxg

S
;Þ ¼ RðfxgÞ,

i.e., ðy; xÞ 2 R. Therefore, R is symmetric. To sum up, this completes
the proof. h
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The above results show that many important concepts in rough
sets can be concisely characterized by corresponding concepts in mat-
roid theory. Therefore, matroids may be efficient to study rough sets.

5. Matroidal approaches to attribute reduction

Attribute reduction, also called feature selection, is to preserve
the essence and remove the redundancy of an information/decision
table [3,8]. In this section, we provide two equivalent characteriza-
tions of attribute reduction of information systems in the matroidal
structure. First of all, the quotient set, this is, the family of all equiv-
alence classes of an equivalence relation is represented by the rank
function of the matroid induced by the equivalence relation. In fact,
an equivalence class is a maximal set whose rank is equal to one.

Proposition 14. Let R be an equivalence relation on U. Then

U=R ¼ MaxfX # UjrMðRÞðXÞ ¼ 1g;

where U=R is the family of all equivalence classes of R, i.e.,
U=R ¼ fRNðxÞjx 2 Ug.
Proof. We only need to prove fRNðxÞjx 2 Ug ¼ MaxfX # UjrMðRÞ
ðXÞ ¼ 1g. For all x 2 U, it is straightforward that rMðRÞðRNðxÞÞ ¼ 1.
If RNðxÞ R Max fX # UjrMðRÞðXÞ ¼ 1g, then there exists Y # U such
that RNðxÞ � Y and Y 2 MaxfX # UjrMðRÞðXÞ ¼ 1g. We suppose
y 2 Y � RNðxÞ, then RNðxÞ

S
fyg# Y . According to Proposition 6,

rMðRÞðRNðxÞ
S
fygÞ ¼ 2, then rMðRÞðYÞP rMðRÞðRÞðRNðxÞ

S
fygÞ ¼ 2,

which is contradictory with rMðRÞðYÞ ¼ 1. Hence RNðxÞ 2 Max
fX # UjrMðRÞðXÞ ¼ 1g, i.e., U=R # MaxfX # UjrMðRÞðXÞ ¼ 1g. Con-
versely, for all X 2 Max fX # UjrMðRÞðXÞ ¼ 1g, we suppose x 2 X, then
we now prove X ¼ RNðxÞ. In fact, if X – RNðxÞ, then X � RNðxÞ – ; or
RNðxÞ � X – ;. If X � RNðxÞ– ;, then we suppose y 2 X � RNðxÞ,
thus fx; yg# X and rMðRÞðfx; ygÞ ¼ 2, which is contradictory with
rMðRÞðXÞ ¼ 1. If RNðxÞ � X – ;, then we suppose y 2 RNðxÞ � X, thus
X # X

S
fyg and rMðRÞðX

S
fygÞ ¼ 1, which is contradictory with

X 2 Max fX # UjrMðRÞðXÞ ¼ 1g. Therefore, MaxfX # UjrMðRÞðXÞ ¼ 1g
# U=R. h

The indiscernibility relation in an information system is also an
equivalence relation, and an equivalence relation and its quotient
set are uniquely determined by each other. Therefore, Proposition
14 lays a sound foundation for studying attribute reduction of
information systems in the matroidal structure. In fact, the quo-
tient set of an equivalence relation can also be equivalently formu-
lated by the closure operator of the matroid.

Proposition 15. Let R be an equivalence relation on U. Then

U=R ¼ fclMðRÞðXÞjX # U; rMðRÞðXÞ ¼ 1g ¼ fclMðRÞðfxgÞjx 2 Ug:
Proof. According to Corollary 3, it is straightforward. h

The next proposition is presented to establish a relationship
between the equivalence relation generated by the intersection
of two equivalence relations and the matroids induced by these
two equivalence relations respectively.

Proposition 16. Let R1 and R2 be two equivalence relations on U.
Then

U=ðR1

\
R2Þ ¼ MaxfX # UjrMðR1ÞðXÞ ¼ rMðR2ÞðXÞ ¼ 1g:

In fact, the relationship between the equivalence relation
induced by the intersection of two equivalence relations and the
matroids induced by these equivalence relations respectively can
also be reflected by the closure operator.
Proposition 17. Let R1 and R2 be two equivalence relations on U.
Then

U=ðR1

\
R2Þ ¼ fclMðR1ÞðfxgÞ

\
clMðR2ÞðfxgÞjx 2 Ug:

The following proposition provides a sufficient and necessary
condition for the rank function of the matroid induced by an equiv-
alence relation.
Proposition 18. Let R1 and R2 be two equivalence relations on U.
Then MaxfX # UjrMðR1ÞðXÞ ¼ 1g ¼ MaxfX # UjrMðR2ÞðXÞ ¼ 1g iff
fX # UjrMðR1ÞðXÞ ¼ 1g ¼ fX # UjrMðR2ÞðXÞ ¼ 1g.
Proof. It is straightforward. In fact, fX # UjrMðRÞðXÞ ¼ 1g ¼
LowðMaxfX # UjrMðRÞðXÞ ¼ 1gÞ � f;g for any equivalence relation
R. h

The following proposition indicates that the indiscernibility
relation induced by any attribute subset can be represented by
the rank function of the matroid induced by each attribute subset.

Proposition 19. Let IS ¼ ðU;AÞ be an information system. Then for all
B # A,

INDðBÞ ¼ MaxfX # Uj8b 2 B; rMðbÞðXÞ ¼ 1g:
Proof. According to Proposition 16, it is straightforward. h

Note that b is used to express INDðfbgÞ; in other words, b
denotes the equivalence relation induced by attribute subset fbg.
Based on Proposition 19, we present equivalent formulations of
attribute reduction of information systems.

Theorem 2. Let IS ¼ ðU;AÞ be an information system. For all B # A;B
is a reduct of IS iff it satisfies the following two conditions:

(1) 8b2B;fX #Uj8c2B�fbg;rMðcÞðXÞ¼1g–fX #Uj8c2B;rMðcÞðXÞ¼1g;
(2) fX # Uj8b 2 B; rMðbÞðXÞ ¼ 1g ¼ fX # Uj8a 2 A; rMðaÞðXÞ ¼ 1g.

Theorem 2 shows that attribute reduction of an information
system keeps those sets with one rank unchanged from a matroidal
point of view. That provides a new view for attribute reduction in
information systems. In fact, from the viewpoint of closure opera-
tors, attribute reduction of information systems can also be
represented.

Lemma 4. Let IS ¼ ðU;AÞ be an information system. For all B # A;B is
a reduct of IS iff it satisfies the following two conditions:

(1) 8b 2 B; f
T

c2BclMðcÞðfxgÞjx 2 Ug– f
T

c2B�fbgclMðcÞðfxgÞjx 2 Ug;
(2) f

T
c2BclMðcÞðfxgÞjx 2 Ug ¼ f

T
c2AclMðcÞðfxgÞjx 2 Ug.

In fact, closure operators of the matroids induced by equiva-
lence relations generated by some attributes can also be used to
equivalently characterize attribute reduction.

Theorem 3. Let IS ¼ ðU;AÞ be an information system. For all B # A;B
is a reduct of IS iff it satisfies the following two conditions:

(1) 8b 2 B, there exists xb 2 U, such that

\

c2B

clMðcÞðfxbgÞ–
\

c2B�fbg
clMðcÞðfxbgÞ;
(2) 8x 2 U;
T

c2BclMðcÞðfxgÞ ¼
T

c2AclMðcÞðfxgÞ.
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This section points out two equivalent formulations of attribute
reduction from viewpoints of closure operator and rank function
respectively. Matroids have a powerful axiomatic system, therefore
more equivalent characterizations for attribute reduction may be
available. These matroidal representations for attribute reduction
present new perspectives to study information systems.

6. Conclusions

This paper establishes a matroidal structure of rough sets and
employs it to equivalently characterize rough sets and information
systems. On one hand, we construct an isomorphism from equiva-
lence relations to 2-circuit matroids, which lays sound foundations
for integrating rough sets with matroids. On the other hand, mat-
roidal approaches are used to study rough sets and information
systems. In rough sets, important concepts including approxima-
tion operators and precise sets are equivalently represented by
matroids. In information systems, attribute reduction is also char-
acterized in the matroidal structure.

Though some works have been conducted in this paper, there
are still many interesting topics deserving further investigation:

(1) Rough set characteristic discovering. Equivalent character-
izations of concepts in rough sets using corresponding mat-
roidal concepts could be much helpful to reveal the intrinsic
characteristics of rough sets. For example, an isomorphism
from equivalence relations to 2-circuit matroids provides
matroidal platforms to study rough set problems.

(2) Attribute reduction algorithm designing. Some quantitative
tools such as attribute significance, information entropy
and approximate classified precision serve as heuristic func-
tions of heuristic algorithms for attribute reduction. Simi-
larly, some quantitative tools in matroid theory including
rank function and matroid connectivity could work better
because of sound theoretical foundations.

(3) Cost-sensitive rough set investigating. Matroids construct
good platforms for greedy algorithms, especially some prob-
lems containing weight functions. Matroids could provide
well-established mathematical structures to characterize
and solve problems in cost-sensitive rough sets [20].
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