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a b s t r a c t 

Recommender systems employ recommendation algorithms to predict users’ preferences 

to items. These preferences are often represented as numerical ratings. However, existing 

recommender systems seldom suggest the appropriate behavior together with the numeri- 

cal prediction, nor do they consider various types of costs in the recommendation process. 

In this paper, we propose a regression-based three-way recommender system that aims 

to minimize the average cost by adjusting the thresholds for different behaviors. This is 

undertaken using a step-by-step approach, starting with simple problems and progressing 

to more complex ones. First, we employ memory-based regression approaches for binary 

recommendation to minimize the loss. Next, we consider misclassification costs and adjust 

the approaches to minimize the average cost. Finally, we introduce coupon distribution ac- 

tion with promotion cost, and propose two optimal threshold-determination approaches 

based on the three-way decision model. From the viewpoint of granular computing, a 

three-way decision is a good tradeoff between the numerical rating and binary recom- 

mendation. Experimental results on the well-known MovieLens data set show that thresh- 

old settings are critical to the performance of the recommender, and that our approaches 

can compute unique optimal thresholds. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Recommender systems have been studied extensively to manage items, such as movies [8,22,24] and music [1,49,70] . One

of the most successful technologies for recommender systems is memory-based collaborative filtering (CF) [16] , which uses

a database of user preferences to predict additional topics or products that may appeal to a new user. These preferences

are typically expressed as numerical ratings. Many CF approaches have been designed to minimize mean absolute error

(MAE) [55] . However, as indicated in [16] , minimizing MAE can produce a so-called “magic” barrier, where natural variabil-

ity prevents obtaining good accuracy. In practice, the aim of recommender systems is to present to the user a reasonable

suggestion rather than a numerical prediction. 

Granular computing is a general computational theory for using granules such as classes, clusters, subsets, groups, and

intervals to build an efficient computational model for complex applications [58] . Rough set is a leading special case

of granular computing approach [30] . Three-way decision [31,32,64,68] is an extension of decision theoretical rough sets

[57,62,69] for dealing with situations in which three different decisions can be made, namely, accept, reject, and wait-and- 

see. Within the trisecting-and-acting framework [67] , three-way decision is described as two separated tasks of trisecting
∗ Corresponding author. Tel.: +86 135 4068 5200. 
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and acting. With respect to trisecting [67] , a universal set is divided into three regions as regions I, II, and III, respectively.

With respect to acting [67] , there are strategies I, II, and III, respectively. Recently, there is a trend to applying three-way

decision to different applications, such as email spam filtering [77] , risk decision making [27] , face recognition [26] , concept

lattices [42] and recommender system [2,74] . 

In this paper, we propose a regression-based three-way recommender system, the aim of which is to minimize the

average cost by adjusting the thresholds for different behaviors. We are essentially dealing with three problems, where the

last problem is more general than the first. The first problem is regression-based binary recommendation. The regression

subtask is fulfilled using the slope one [25] or k -nearest neighbors ( k NN) [44] algorithm to predict the ratings. To convert

the numerical prediction into a binary recommendation, a threshold is needed. An item with an above-threshold rating is

recommended, while one with a below-threshold rating is not. We design a threshold learning approach to determine the

threshold r ∗t minimizing classification loss. 

The second problem involves misclassification costs [14,23] corresponding to incorrect recommendation behavior, includ-

ing recommending items to users who dislike them, and non-recommending items to users who like them. In existing

works, misclassification cost is the most widely considered cost since classification is one of the main tasks in data min-

ing (see, e.g., [12,20,78] ). Because misclassification costs are considered, the work essentially involves cost-sensitive learning

[14,34–36,79] . A cost-sensitive learning approach is designed to determine the optimal threshold r c t according to the mis-

classification costs. Naturally, the objective is to minimize the average misclassification cost. 

The last, but crucial problem introduces the coupon distribution action, including promotion cost, to enrich recommender

behavior. Promotion cost derives from consultation with the user about the actual decision. We propose optimal threshold

determination approaches based on the three-way decision model. This kind of decision often begins with a cost matrix

including misclassification and delay costs. In our scenario, we consider promotion cost instead of delay cost. Consequently,

we have three actions, namely, recommend, non-recommend, and promote. Determining the threshold pair ( r ∗
l 
, r ∗

h 
) involves

three steps. First, two parameters, α∗ and β∗, are computed according to the cost matrix. Second, the probability PR that

the user likes an item is predicted using the slope one or k NN algorithm. Third, the threshold pair is determined based on

α∗, β∗, and PR . If the prediction for an item is greater than r ∗
h 
, the item is recommended to the user, while a prediction less

than r ∗
l 

results in the item not being recommended. Otherwise, we consider user tendency, which incurs promotion cost. 

In our scenario, numerical prediction is exceedingly fine for the recommendation, while binary recommendation is rather

coarse, with three-way decision a good tradeoff between these. From the viewpoint of granular computing [29,53,56,59,72] ,

three-way decision has good granularity. 

Experimental results, obtained using the well-known MovieLens data set ( http://www.movielens.org/ ), show that: 1) the

loss of regression-based binary recommendation (where the minimum loss of the slope one algorithm is obviously lower

than that of the k NN one) is a convex function with respect to threshold r t , and has a unique minimum; 2) the misclas-

sification cost settings directly influence the optimal setting of the recommendation threshold r c t , where the average cost

considering unequal misclassification costs is obviously lower than that considering equal misclassification costs; and 3) the

optimal threshold ( r ∗
l 
, r ∗

h 
)-pair determined by three-way decision is optimal not only on the training set, but also on the

testing set. With the introduction of promotion cost, the three-way approach often achieves a significantly lower average

cost compared with the two-way approach. 

The rest of the paper is organized as follows. Section 2 presents some preliminary knowledge including the rating system

and memory-based recommendation. Sections 3 –5 discuss regression-based binary recommendation, misclassification cost

minimizing recommendation, and three-way-decision-based recommendation, respectively. Section 6 presents the experi-

mental results on the MovieLens data set for the three models. Finally, our conclusions are given in Section 7 . 

2. Related works 

Collaborative filtering recommender systems usually use the rating system as input, and recommender accuracy as a

kind of evaluation metric. Our recommendation behavior considers both misclassification and promotion costs. Through

cost-sensitive learning, we build proper classifiers to find the minimum average cost. 

2.1. Rating system 

First, we revisit the rating system proposed in [75] . Let U = { u 0 , u 1 , . . . , u n −1 } be the set of users of a recommender

system and V = { t 0 , t 1 , . . . , t m −1 } be the set of all possible items that can be recommended to users. Then, the rating function

is given by 

R : U × V → V k , (1)

where V k is the rating domain used by the users to evaluate items, and r w 

and r g are the lowest and highest ratings, re-

spectively. For convenience, we represent the rating system with an n × m rating matrix R = (r i, j ) n ×m 

, where r i, j = R (u i , t j ) ,

0 ≤ i ≤ n − 1 , and 0 ≤ j ≤ m − 1 . 

Example 1. An example rating system is depicted in Table 1 , where V k = { 1 , 2 , 3 , 4 , 5 } . In Table 1 , some elements are zero,

indicating that the users do not watch the corresponding movies. 

http://www.movielens.org/
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Table 1 

Rating matrix( R ). 

UID � TID t 0 t 1 t 2 t 3 t 4 

u 0 1 2 0 0 1 

u 1 0 3 2 0 0 

u 2 0 4 5 0 0 

u 3 4 0 0 5 4 

u 4 0 1 0 5 5 

u 5 0 0 3 2 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given a rating system, we often test the performance of a regression approach using the leave-one-out scheme. For each

r i , j � = 0, we predict its value using all the other data in R . The predicted value is denoted as p i , j . In this way, we obtain the

prediction matrix P = (p i, j ) n ×m 

. p i, j = 0 if r i, j = 0 , indicating that the respective value is unknown/invalid. The MAE of the

predictor is defined as 

mae (P, R ) = 

∑ n −1 
i =0 

∑ m −1 
j=0 | p i, j − r i, j | 

|{ (i, j) ∈ { 0 ..n − 1 } × { 0 ..m − 1 }| r i, j > 0 }| . (2) 

Many regression approaches essentially deal with the following problem. 

Problem 2. MAE minimizing regression problem. 

Input: R 

Output: P 

Optimization objective: mae ( P , R ) 

Naturally, the minimal possible value of mae ( P , R ) is zero. However, because there is a “magic” barrier [16] in the data

set, we have no way of knowing the true minimal MAE of an application. 

2.2. Slope one predictor 

Slope one is an item-based collaborative filtering recommendation algorithm based on linear regression [28] that deter-

mines the extent by which users prefer one item to another. It uses a simple formula that merely subtracts the average

rating of the two items to determine the deviation. Then, given a user’s ratings of certain items, the deviation can be used

to predict the user’s ratings of other items. 

The underlying principle of the slope one algorithm is the use of linear regression for prediction [25] . The predictor takes

the form f (x ) = x + b, where the free parameter b is the average deviation of the ratings of two users or items. For many

examples, the predictor is more accurate and faster than linear regression of f (x ) = ax + b, while the algorithm requires at

most half the amount of storage. 

The prediction process involves two steps: (1) calculate the average deviation de v j,i of the target item t j from another

item t i ; and (2) predict the rating p k , j of the target item t j by the currently active user u k . 

S i , j is the set of users rating both items t i and t j . Given two items t i and t j with ratings r k , i and r k , j respectively, the

average deviation de v j,i is calculated as 

de v j,i = 

∑ 

k ∈ S i, j 

r k, j − r k,i 

| S i, j | . (3) 

Q j is the item set rated by the target user. Item rating p k , j can be predicted as 

p k, j = 

1 

| Q j | 
∑ 

i ∈ Q j 
(de v j,i + r k,i ) (4) 

Slope one is adaptive to data sparsity and can generate effective recommendations in real-time [25] . Moreover, it is ex-

tensible and easy to realize. It is used in many online recommendation systems [28] , such as DVD and MP3 recommendation

systems. 

2.3. Neighbor-based collaborative filtering recommendation 

Neighbor-based collaborative filtering recommendation [50] predicts the preferences of active users to items using only

the rating matrix. The fundamental assumption of neighbor-based collaborative filtering is that if users u x and u y have

similar behaviors (e.g., buying, watching, listening) or rate n items similarly, they are likely to rate other items similarly or

act the same in other situations [50] . Neighbor-based collaborative filtering recommendation usually uses the measurement

of similarity to obtain the distance between two users or two items. Similarity measures such as Pearson’s correlation

coefficient [9] , vector space similarity [4] , and cosine-based similarity [11,19,44] are widely used. 
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There are two kinds of neighbor-based collaborative filtering methods [33,45,54] , namely, user- and item-based collabo-

rative filtering. The basic idea of user-based collaborative filtering is to recommend an item to a user based on other like-

minded users’ opinions of that item. The user-based collaborative filtering approach first finds a set of nearest “neighbors”

(similar users), sharing similar favorite items or interests. Then, a user’s rating of an unrated item is predicted based on the

ratings of that item given by the user’s “neighbors”. Contrarily, the item-based collaborative filtering approach recommends

an item to a user based on other items with high correlations. Unlike user-based collaborative filtering, the item-based col-

laborative filtering approach first finds a set of nearest “neighbors” (similar items) for each item. Item-based collaborative

filtering recommender systems attempt to predict a user’s rating of an item based on his/her ratings of neighboring items

to the target item. 

Collaborative filtering recommender systems frequently use the k NN [40,44,73] algorithm to identify candidate items. In

the k NN method, the top- k recommendations are generated only from items “liked” by a subset of users who are “closest”

(less than a certain distance) to the target user and not from all items. The k NN algorithm is a non-parametric method used

for classification and regression. In k NN regression, the output is the property value of the object; that is, the average of

the values of its k nearest neighbors. In the classification phase, k is a user-defined constant, where the best choice for k

depends on the data. Generally, larger values of k reduce the effect of noise on the classification. A shortcoming of the k NN

algorithm is that it is sensitive to the local structure of the data. 

2.4. Granular computing and three-way decision 

Granular computing [39,41,66] focuses on a set of philosophy, methodology and paradigm for structured thinking, struc-

tured problem solving and structured information processing at multiple levels of granularity [63] . Granular structures con-

sist of many hierarchies for multiview descriptions of a problem, with each hierarchy being composed of multiple levels

of abstraction [63] . Zadeh [71,72] considers granular computing as a basis for computing with words. Yao [60,61] views

granular computing as a complementary and dependant triangle: structured thinking within the philosophical perspec-

tive, structured problem solving within the methodological perspective, and structured information processing within the

computational perspective. Skowron and Stepaniuk [18,48] view granular computing from rough set point of view. Rough

approximations are used to model syntax, semantics, and operations of information granules. Recently, granular computing

and rough sets have been widely applied to data mining [6,15,17,37,43] . 

Three-way decision may be related to a basic principle of granular computing [66] . In rough set theory, three-way deci-

sion focuses on a more general class of problems where a set of objects are divided into three pair-wise disjoint I, II, and

III regions [7,65,67] . Decisions of acceptance, non-commitment or rejection are strategies for the three regions. When the

available information is insufficient or the evidence is not strong enough to support an acceptance or a rejection at a par-

ticular level of granularity, a third option of non-commitment allows us to defer a decision to the next level of granularity

[66] . 

The starting point of three-way decision is often a cost matrix with misclassification and delay costs. In this work, we

consider promotion cost instead of delay cost. Promotion cost is incurred through buying decisional data from the user.

The recommendation action involved in paying promotion cost forms an active learning scenario. Active learning guides

the acquisition of new knowledge suitable for updating rated or browsed information [21,47,51] in time. Turney [52] used

inductive concept learning to create a taxonomy of the different types of cost, and discussed the expected cost of classifying

the new instance itself versus the cost of asking a teacher to classify the new instance. Both promotion and test costs are

incurred when buying data; they differ in that promotion cost is incurred to obtain a decision or result, whereas test cost

relates to obtaining an attribute value. 

3. Regression-based binary recommendation 

We present a two-step approach for regression-based binary recommendation. In the first step, the predication matrix

P is computed using a regression approach. Because existing approaches, such as the slope one and k NN algorithms, are

discussed in Section 2 , we do not discuss this in detail here. In the second step, we transfer P to binary recommendations.

This is undertaken by computing a threshold for converting numerical prediction to binary recommendation. For simplicity,

throughout this section we assume that 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1 . 

3.1. Problem statement 

Because we present binary recommendations instead of numerical ones, we need to evaluate whether the recommenda-

tion is appropriate. Some researchers assume that a rating of 4 or 5 indicates that the user likes the item, whereas others

assume that only a rating of 5 indicates like. Let l t denote the rating threshold for like and Y and N indicate that the user

likes and dislikes the item, respectively. The actual rating matrix can be transferred to the interest matrix UM = (um i, j ) n ×m 

,

where 

um i, j = 

{ 

Y, if r i, j ≥ l t ;
N, if 0 < r i, j < l t ;
unknown, otherwise. 

(5)
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Our algorithm is based on regression approaches providing numerical prediction of rating. Here we discuss how such

predictions are converted to binary suggestions. Let the prediction matrix be P = (p i, j ) n ×m 

, where p i , j is the predicted rating

by u i of t j , and p i, j = 0 indicates an invalid prediction. Invalid prediction corresponds to zero values in the actual rating

matrix. Unlike actual rating, which has only five discrete scores in our example, the domain of p i , j is continuous. Assuming

that ratings of 4 and 5 indicate like, if p i, j = 3 . 8 , we cannot determine whether to recommend the item to the user. Thus,

we need to find another appropriate threshold. 

Let r t denote the recommendation threshold, and e R and e N be the recommend and non-recommend behaviors, respec-

tively. The prediction matrix P is transferred to the recommendation matrix RM = (rm i, j ) n ×m 

, where 

rm i, j = 

{ 

e R , if p i, j ≥ r t ;
e N , if 0 < p i, j < r t ;
in v alid, otherwise. 

(6) 

Based on l t , r t , and R , objects in P are classified into four regions, namely, true recommendation ( RY ), false recommenda-

tion ( RN ), false non-recommendation ( NY ), and true non-recommendation ( NN ). Given that l t = 4 and r t = 3.5, with r i, j = 5

and p i, j = 3 . 8 , object 〈 i , j 〉 is classified into RY . The numbers of objects in the four regions are given by 

RY (R, P, l t , r t ) = |{〈 i, j〉| r i, j ≥ l t , p i, j ≥ r t }|;
RN(R, P, l t , r t ) = |{〈 i, j〉| 0 < r i, j < l t , p i, j ≥ r t }|;
NY (R, P, l t , r t ) = |{〈 i, j〉| r i, j ≥ l t , 0 < p i, j < r t }|;
N N (R, P, l t , r t ) = |{〈 i, j〉| 0 < r i, j < l t , 0 < p i, j < r t }| . (7) 

The total number of nonzero objects in the actual matrix R is given by 

AN(R ) = |{〈 i, j〉| r i, j > 0 }| . (8) 

Our regression approaches aim to minimize the loss, also called the misclassification rate in some literature (see, e.g.,

[5,38] ). The loss is computed based on the numbers of objects in the four regions. 

ls (R, P, l t , r t ) = 

RN(R, P, l t , r t ) + NY (R, P, l t , r t ) 

AN(R ) 
. (9) 

Once the prediction matrix P has been computed, we are faced with the problem of determining the recommendation

threshold such that the loss is minimized. 

Problem 3. Optimal recommendation threshold problem. 

Input: R , P , and l t 
Output: r t 
Optimization objective: min ls ( R , P , l t , r t ) 

As P is already given, the minimal value of ls ( R , P , l t , r t ) is deterministic in practice. This is different from Problem 2 where

the minimal possible value of MAE is non-deterministic. We denote 

r ∗t = arg min 

r w ≤r t ≤r g 
ls (R, P, l t , r t ) . (10) 

As can be seen in Fig. 2 , r ∗t is usually unique. 

3.2. Threshold determination for loss minimization 

Algorithm 1 illustrates the entire process from the training set to determining r ∗t . To analyze the time complexity of

Algorithm 1 , let z be the number of non-zero ratings in the actual matrix R . 

In Step 1, P is predicted by the leave-one-out scheme using the slope one or k NN algorithm (lines 1–2). This step is the

most time-consuming one in the entire algorithm. When using the slope one algorithm, the worst case time complexity of

this step is O ( z × n × m ) [3] . Alternatively, when using the k NN algorithm, the corresponding time complexity is also O ( z ×
n × m ) [76] . 

In Step 2 (lines 3–20), the trichotomy method [13] is employed to find r ∗t because ls is a convex function w.r.t. r t as

shown in Fig. 2 . There are three aspects of the trichotomy method: (1) the rating domain V k is divided into three parts:

[ r w 

, md] , ( md , mmd ), and [ mmd , r g ]; (2) ls ( R , P , l t , md ) and ls ( R , P , l t , mmd ) are computed based on Eq. (9) ; and (3) the

optima is obtained when the difference between md and mmd is less than ε. 

In Step 2.1, the numbers of objects in the four regions are counted (line 9). It should be noted that zero ratings are

invalid and are therefore never counted. For each md or mmd , the time cost of classification is z , and therefore the time

complexity of this step is O ( z ). 

In Step 2.2, we compute the loss for two thresholds md and mmd based on Eq. (9) (lines 11–12). If md is close to the

optimal recommendation threshold r ∗t , then right = mmd; otherwise, le f t = md (lines 13–17). We assume that the number

of step lengths between r w 

and r g is q . The time cost for solving the extremum problem based on the trichotomy method is

O (log q ). 
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Algorithm 1 Regression-based recommendation. 

Input : R , l t 
Output : r ∗t 
Method : regressionBasedRecommendation 

1: //Step 1. Prediction 

2: Obtain the prediction matrix P according to the actual matrix R ; 

3: //Step 2. Compute the optimal recommendation threshold r ∗t 
4: le f t = r w 

, right = r g ; 

5: while | right − le f t | > ε do 

6: md = 

le f t+ right 
2 ; 

7: mmd = 

md+ right 
2 ; 

8: //Step 2.1. Classification and count 

9: count the number of objects in the four regions using Equation (7); 

10: //Step 2.2. Compute the loss 

11: ls (R, P, l t , md) = 

RN (R,P,l t ,md)+ N Y (R,P,l t ,md) 
AN(R ) 

; 

12: ls (R, P, l t , mmd) = 

RN (R,P,l t ,mmd)+ N Y (R,P,l t ,mmd) 
AN(R ) 

; 

13: if ls (R, P, l t , md) < ls (R, P, l t , mmd) then 

14: right = mmd; 

15: else 

16: le f t = md; 

17: end if 

18: end while 

19: //Step 2.3. Output r ∗t 
20: r ∗t = le f t; 

21: return r ∗t ; 

Table 2 

Prediction matrix ( P ). 

UID � TID t 0 t 1 t 2 t 3 t 4 

u 0 1 .5 1 0 0 3 

u 1 0 1 4 0 0 

u 2 0 5 3 0 0 

u 3 4 .5 0 0 4 4 .5 

u 4 0 5 0 3 2 .75 

u 5 0 0 2 2.75 2 .25 

 

 

 

 

 

 

 

 

In Step 2.3, when the difference between left and right reaches a preset error range (e.g., ε = 0.01), we can output left or

right as r ∗t (line 20). The time complexity of this step is O (1). Therefore, the time complexity of Step 2 is O ( z × log q ). 

To summarize, if the prediction algorithm uses slope one, the time complexity of Algorithm 1 is 

O (z × n × m ) + O (z × log q ) = O (z × n × m ) (11)

since log q < n × m . If the prediction algorithm uses k NN, the time complexity of Algorithm 1 is 

O (z × n × m ) + O (z × m ) + O (z × log q ) = O (z × n × m ) . (12)

In other words, the time complexity depends only on Step 1. 

3.3. Working example #1 

In this subsection, we explain regression-based binary recommendation with the aid of a running example. 

In Step 1, we employ the slope one algorithm to predict the test object based on the actual matrix R as shown in

Table 1 with leave-one-out cross validation. The prediction matrix P is given in Table 2 . 

In Step 2, let the like threshold l t be 4. Because the example is a small data set, ε is set to one. For ease of explanation,

we list the regression-based classification in Table 3 and the loss in Table 4 for the different thresholds. For example, the loss

is given by 4 
16 = 0 . 25 when r t = 2 . 3 ∼ 3 . 0 . It should be noted that zero ratings are invalid and therefore are never counted.

We employ the trichotomy method to compute the optimal recommendation threshold r ∗t . The computed process is shown

in Table 5 . Finally, we determine the optimal recommendation threshold r ∗t as 2.6875. 
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Table 3 

Regression-based classification. 

r t Behavior Y N 

1.0 e R 7 9 

e N 0 0 

1.1 ∼ 1.5 e R 7 7 

e N 0 2 

1.6 ∼ 2.0 e R 7 6 

e N 0 3 

2.1 ∼ 2.2 e R 7 5 

e N 0 4 

2.3 ∼ 2.7 e R 7 4 

e N 0 5 

2.8 ∼ 3.0 e R 6 3 

e N 1 6 

3.1 ∼ 4.0 e R 4 2 

e N 3 7 

4.1 ∼ 4.5 e R 3 1 

e N 4 8 

4.6 ∼ 5.0 e R 1 1 

e N 6 8 

5.1 e R 0 0 

e N 7 9 

Table 4 

Losses for different thresholds. 

r t ls ( R , P , l t , r t ) 

1.0 0.56 

1.1 ∼ 1.5 0.44 

1.6 ∼ 2.0 0.38 

2.1 ∼ 2.2 0.31 

2.3 ∼ 3.0 0.25 

3.1 ∼ 4.5 0.31 

4.6 ∼ 5.0 0.44 

5.1 0.44 

Table 5 

Threshold determination process. 

le f t right md mmd ls ( R , P , l t , md ) ls ( R , P , l t , mmd ) 

1 5 3 4 0.25 0.31 

1 4 2.5 3.25 0.25 0.31 

1 3.25 2.125 2.6875 0.31 0.25 

2.125 3.25 2.6875 2.96875 0.25 0.25 

2.6875 3.25 – – – –

 

 

 

 

 

 

 

4. Misclassification cost minimizing recommendation 

In many applications different misclassifications lead to different costs. For recommender systems, incorrect recommen-

dations correspond to misclassifications. Our purpose is to realize a recommender system with low average misclassification

cost. We still follow the two-step approach presented in Section 3 , with the same focus of determining the recommendation

threshold. However, the objective is to minimize the average cost instead of the loss. 

4.1. Problem statement 

There are two recommendation behaviors, namely, recommend and not recommend. Let r P be recommendation behavior

and r N be non-recommendation one, respectively. There are also two user preferences, namely, like and dislike. The misclas-

sification cost is represented as a 2 × 2 matrix as shown in Table 6 . In this paper we assume that λRY = λNN = 0 ; that is,

correct recommendation incurs no cost. 

Our misclassification cost minimization approach aims to minimize the average cost, which is computed using Eq. (7) and

Table 6 as 

am (R, P, l t , C, r c ) = 

RN(R, P, l t , r c ) × λRN + NY (R, P, l t , r c ) × λNY 

AN(R ) 
. (13) 
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Table 6 

Misclassification cost ( C ). 

Behavior �Preference Y N 

e R λRY λRN 

e N λNY λNN 

Table 7 

Average misclassification costs for different thresholds. 

λNY 

λRN 
1.0 1.1 ∼ 1.5 1.6 ∼ 2.0 2 .1 ∼ 2.2 2.3 ∼ 2.7 2.8 ∼ 3.0 3.1 ∼ 4.0 4.1 ∼ 4.5 4.6 ∼ 5.0 5.1 

0.25 60.8 47.3 40.5 33 .8 27 .0 21.9 18.6 13.5 16.9 11.8 

0.5 50.6 39.4 33.8 28 .1 22 .5 19.7 19.7 16.9 22.5 19.7 

1 38.0 29.5 25.3 21 .1 16 .9 16.9 21.1 21.1 29.5 29.5 

2 25.3 19.7 16.9 14 .1 11 .3 14.1 22.5 25.3 36.6 39.4 

4 15.2 11.8 10.1 8 .4 6 .8 11.8 23.6 28.7 42.2 47.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the misclassification cost C is assigned in a real application, we are faced with the problem of determining the

recommendation threshold, such that the average cost is minimized. 

Problem 4. Optimal recommendation threshold problem. 

Input: R , P , l t , and C 

Output: r c 
Optimization objective: min am ( R , P , l t , C , r c ) 

As P and C are already given, the minimal value of am ( R , P , l t , C , r c ) is deterministic in practice. Considering the misclas-

sification cost, this is more general than Problem 3 . We denote 

r ∗c = arg min 

r w ≤r t ≤r g 
am (R, P, l t , C, r c ) . (14)

As can be seen in Fig. 2 , r ∗c is usually unique. 

4.2. Misclassification cost minimizing algorithm 

Although Problem 4 is more general than Problem 3 , the basic characteristics of both algorithms are the same. Therefore,

we can employ the same search strategy to find the optimal threshold. We revise Algorithm 1 in the following way to deal

with Problem 4 . Line 11 is replaced by the computation of am ( R , P , l t , C , md ), while line 12 is replaced by the computation

of am ( R , P , l t , C , mmd ). The computation is given by Eq. (13) . 

For the sake of brevity, we do not list the algorithm. Naturally, while λRN = λNY , the new algorithm coincides with

Algorithm 1 . 

4.3. Working example #2 

In this subsection, we explain the misclassification cost minimization recommendation using a running example. 

The first step is the same as that in running example #1 . The regression-based classification listed in Table 3 , is the same

as that in running example #1 . 

In Step 2, the misclassification costs are assigned as λRN = 90 and λNY = 45. We compute the average cost for different

ratios as shown in Table 7 according to Eq. (13) . For example, the average cost of r c = 4 . 1 and 

λRN 
λNY 

= 0 . 5 is given by 

am (R, P, 4 , C, 4 . 1) = 

1 ∗ 90 + 4 ∗ 45 

3 + 1 + 4 + 8 

≈ 16 . 9 . 

Because determination of the optimal recommendation threshold r ∗c is similar to determination of r ∗t by means of the

trichotomy method, we do not discuss this in detail. 

5. Three-way-decision-based recommendation 

As discussed in Section 2.4 , in an active learning scenario, promotion cost is incurred when buying a decision or result

from the user. With both misclassification and promotion costs, a three-way-decision model is built. Our purpose is to

obtain a recommender system with low average three-way cost. We propose two approaches for determining the optimal

recommendation threshold pair: a proportion-based approach and a minimizing search approach. However, the objective is

to minimize the average three-way cost instead of the average misclassification cost. As before, we assume 0 ≤ i ≤ n − 1 and

0 ≤ j ≤ m − 1 in this section. 
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Table 8 

Three-way cost ( W ). 

Behavior �Preference Y N 

e R λRY λRN 

e P λPY λPN 

e N λNY λNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Problem statement 

We apply the trisecting-and-acting framework [67] to divide the candidate recommended items V into three pair-wise

disjoint regions: recommendation, promotion, non-recommendation. Corresponding to the three regions, we have three rec- 

ommendation behaviors, namely recommend, promote, and non-recommend, respectively. Let e P be the promotion behavior.

Meanwhile, we define two user preferences, namely like and dislike. 

The three-way cost is represented as a 3 × 2 matrix shown in Table 8 . If user dislikes the recommended items or RS

does not recommend user’s liked items, we pay the misclassification costs λRN or λNY , respectively. If the the candidate

recommended items fall in the promotion region, we need to provide promotion/educational cost λPY or λPN (usually, λPY =
λPN ). In this paper, we assume that λRY = λNN = 0 ; that is, correct recommendation incurs no cost. 

Similar to the problems proposed in Sections 3.1 and 4.1 , once again, we need to compute thresholds. The difference lies

in that we need a three-way threshold ( r l , r h )-pair instead of only a single threshold. r l and r h denote, respectively, the lower

and upper thresholds for three-way decision. Given a threshold pair, the computation of the average cost is non-trivial. 

In Step 1, we determine whether each object belongs to the recommendation, non-recommendation, or promotive regions

by means of a three-way decision. Based on r l and r h , we obtain the following decision rules: 

(N1) If p ∈ (0, r l ], the object belongs to the non-recommendation region and the recommendation action is e N . 

(B1) If p ∈ ( r l , r h ), the object belongs to the promotive region and the recommendation action is e P . 

(P1) If p ≥ r h , the object belongs to the recommendation region and the recommendation action is e R . 

In Step 2, we count the numbers of objects in the different regions. The numbers of objects in the six regions are given

by 

RY (R, P, l t , W, r l , r h ) = |{〈 i, j〉| r i, j ≥ l t , p i, j ≥ r h }|;
RN(R, P, l t , W, r l , r h ) = |{〈 i, j〉| 0 < r i, j < l t , p i, j ≥ r h }|;
P Y (R, P, l t , W, r l , r h ) = |{〈 i, j〉| r i, j ≥ l t , r l < p i, j < r h }|;
P N(R, P, l t , W, r l , r h ) = |{〈 i, j〉| 0 < r i, j < l t , r l < p i, j < r h }|;
NY (R, P, l t , W, r l , r h ) = |{〈 i, j〉| r i, j ≥ l t , 0 < p i, j ≤ r l }|;
N N (R, P, l t , W, r l , r h ) = |{〈 i, j〉| 0 < r i, j < l t , 0 < p i, j ≤ r l }| . (15) 

In Step 3, the total cost of all regions is computed according to the three-way cost and the number of objects in the

respective region. It is given by 

t t (R, P, l t , W, r l , r h ) = λRY RY (R, P, l t , W, r l , r h ) + λRN RN(R, P, l t , W, r l , r h ) 

+ λPY P Y (R, P, l t , W, r l , r h ) + λPN P N(R, P, l t , W, r l , r h ) 

+ λNY NY (R, P, l t , W, r l , r h ) + λNN NN(R, P, l t , W, r l , r h ) . (16) 

In Step 4, we compute the average three-way cost as 

at(R, P, l t , W, r l , r h ) = 

tt(R, P, l t , W, r l , r h ) 

AN(R ) 
. (17) 

When the three-way cost W is assigned in a real application, we are faced with the problem of determining the three-

way recommendation threshold pair that minimizes the average three-way cost. 

Problem 5. Three-way recommendation threshold pair problem. 

Input: R , P , l t , W 

Output: r l , r h 
Optimization objective: min at ( R , P , l t , W , r l , r h ) 

Because P and W are already given, the minimal value of at ( R , P , l t , W , r l , r h ) is deterministic in practice. With the

introduction of promotion cost, this is more general than Problem 4 . We denote 

(r ∗, r ∗) = arg min at(R, P, l t , W, r l , r h ) . (18)
l h r w ≤r l ≤r g ,r w ≤r h ≤r g 
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Fig. 1. Framework integrating the three-way decision and slope one algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Three-way recommendation framework 

To determine the three-way threshold ( r ∗
l 
, r ∗

h 
)-pair, we construct the framework of three-way decision-based recommen-

dation depicted in Fig. 1 . This is divided into four stages: (1) three-way cost matrix for a real application, including mis-

classification and promotion costs; (2) prediction for the test set using the slope one or k NN algorithm; (3) computation of

the threshold ( r ∗
l 
, r ∗

h 
)-pair, which is the most important stage in our framework; and (4) recommendation of the prediction

using the ( r ∗
l 
, r ∗

h 
)-pair. 

The three-way cost in our example includes: (1) the cost of correct classification, that is, λRY = λNN = 0 ; (2) two types of

promotion costs, that is, λPY = λPN = 18 ; and (3) the cost of recommending an item that a user does not like, λRN = 90 , as

well as that of non-recommending an item that a user likes, λNY = 45 . 

The prediction p of each test object is calculated using the slope one or k NN algorithm as discussed in Section 2 . How-

ever, this is not discussed in detail here. 

We adopt two approaches for determining the three-way recommendation threshold pair, called the proportion-based

approach and minimizing search approach, respectively. In the former approach, if the probability that users like an item

is greater than α∗, the corresponding prediction rating is assigned as the recommendation threshold r ∗
h 
. If it is less than

β∗, the corresponding prediction is assigned as the non-recommendation threshold r ∗
l 
. In the latter approach, we split the

rating system into two parts based on r ∗t , which is obtained in Section 4.2 . Each part uses three-way decision to determine

the recommendation threshold. 

Three-way decision-based recommendation selects a proper recommender action based on the prediction p , and thresh-

old ( r ∗
l 
, r ∗

h 
)-pair. With the three-way threshold pair, the prediction matrix P is transferred to the three-way recommendation

matrix T M = (tm i, j ) n ×m 

, where 

tm i, j = 

{ 

e R , if p i, j ≥ r ∗
h 
;

e P , if r ∗
l 

< p i, j < r ∗
h 
;

e N , if 0 < p i, j ≤ r ∗
l 
. 

(19)

5.3. Three-way recommendation algorithm 

In this subsection, we first compute the three-way parameters ( β∗, α∗) based on the three-way cost, and then we use

the two approaches to determine the recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair. 

5.3.1. Computation of three-way parameters 

We consider a special kind of cost functions with λRY ≤ λPY < λNY and λNN ≤ λPN < λRN [69] . That is, the cost of

classifying movie m in Y into the recommendation region is no greater than that of classifying m into the promotive region,

and both costs are strictly less than the cost of classifying m into the non-recommendation region. The reverse cost order is
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used for classifying a movie in N . We further assume that the cost functions satisfy the condition: 

λNY − λPY 

λPN − λNN 

> 

λPN − λNN 

λRN − λPN 

. (20) 

Given the above two assumptions, we obtain the following equations: 

λRY × α∗ + λRN × (1 − α∗) = λPY × α∗ + λPN × (1 − α∗) , 

λRY × β∗ + λNN × (1 − β∗) = λPY × β∗ + λPN × (1 − β∗) . 
(21) 

After mathematical conversion, the optimal threshold ( β∗, α∗)-pair is computed as [69] 

α∗ = 

λRN − λPN 

(λRN − λPN ) + (λPY − λRY ) 
, 

β∗ = 

λPN − λNN 

(λPN − λNN ) + (λNY − λPY ) 
, 

(22) 

with 0 ≤ β∗ < α∗ ≤ 1. 

5.3.2. Proportion-based approach 

In this subsection, we discuss how to determine the recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair by constructing the propor-

tion model. 

Under the condition of sufficient classification accuracy, we find that the higher the prediction is, the higher is the actual

rating. That is, the like proportion increases as the prediction increases. 

There are three steps in computing the like proportion. First, we obtain the objects whose predictions are between r e 
and r e + s from the test set. Here s denotes the step length. The collection ES ( r e , s ) composed of these objects is given by 

ES(r e , s ) = {〈 i, j〉| 0 ≤ i < n, 0 ≤ j < m, r e ≤ p i, j < r e + s } , (23)

where p i , j ∈ P . Second, we obtain the objects with two conditions from the training set: 1) their ratings are greater than

and equal to the like threshold l t ; and 2) the index pair of each object is also in the collection P ( r e , s ). The collection TS ( r e ,

s , l t ), composed of these objects, is given by 

T S(r e , s, l t ) = {〈 i, j〉 ∈ P (r e , s ) | r i, j ≥ l t } . (24)

Third, having counted the number of objects in the two collections, we compute the proportion as 

P R (r e , s, l t ) = 

| T S(r e , s, l t ) | 
| ES(r e , s ) | . (25) 

We can determine the recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair based on PR , β∗, and α∗. The lower recommendation

threshold r ∗
l 

is given by 

r ∗l = arg min 

r w ≤r e ≤r g 
| P R (r e , s, l t ) − β∗| . (26)

The upper recommendation threshold r ∗
h 

is given by 

r ∗h = arg min 

r w ≤r e ≤r g 
| P R (r e , s, l t ) − α∗| . (27)

5.3.3. Minimizing search approach 

In this subsection, we discuss how to determine the recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair using the minimizing search

approach. 

We can obtain the two-way threshold r ∗t through misclassification cost minimizing recommendation. The r ∗t splits the

domain of rating V k into two intervals of [ r w 

, r ∗t ] and [ r ∗t , r g ]. The lower threshold r ∗
l 

is calculated based on the interval [ r w 

,

r ∗t ], while the upper threshold r ∗
h 

is determined based on the interval [ r ∗t , r g ]. 
The determination of r ∗

l 
includes four steps. First, we determine whether each object belongs to the recommendation,

non-recommendation, or promotive region based on a three-way decision. For ∀ r l ∈ [ r w 

, r ∗t ] , we obtain the following decision

rules: 

(N2) If p ∈ [ r w 

, r l ] , the object belongs to the non-recommendation region. 

(B2) If p ∈ (r l , r 
∗
t ) , the object belongs to the promotive region. 

(P2) If p ∈ [ r ∗t , r g ] , the object belongs to the recommendation region. 

Second, we count the numbers of objects in the different regions, that is, RY (R, P, l t , W, r l , r 
∗
t ) , RN(R, P, l t , W, r l , r 

∗
t ) ,

P Y (R, P, l t , W, r l , r 
∗
t ) , P N(R, P, l t , W, r l , r 

∗
t ) , NY (R, P, l t , W, r l , r 

∗
t ) , and NN(R, P, l t , W, r l , r 

∗
t ) using Eq. (15) . 

Third, the average three-way cost at(R, P, l t , W, r l , r 
∗
t ) is computed using Eq. (17) . 

Finally, we determine the lower threshold r ∗
l 

as 

r ∗l = arg min 

r w ≤r l ≤r ∗t 
at(R, P, l t , W, r l , r 

∗
t ) . (28)

Determination of the upper threshold r ∗
h 

follows the same steps as for r ∗
l 
. For ∀ r h ∈ [ r ∗t , r g ] , we obtain the following

decision rules: 
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Table 9 

Proportion for different thresholds. 

[ r l , r h ) TS ( r e , s , l t ) ES ( r e , s , l t ) PR ( r e , s , l t ) 

[1.0, 1.5) 0 2 0 

[1.5, 2.0) 0 1 0 

[2.0, 2.5) 1 3 0.33 

[2.5, 3.0) 1 2 0.5 

[3.0, 3.5) 2 3 0.67 

[3.5, 4.0) 0 0 0 

[4.0, 4.5) 1 2 0.5 

[4.5, 5.0) 1 1 1 

[5.0, 5.1) 1 2 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

(N3) If p ∈ [ r w 

, r ∗t ] , the object belongs to the non-recommendation region. 

(B3) If p ∈ (r ∗t , r h ) , the object belongs to the promotive region. 

(P3) If p ∈ [ r h , r g ], the object belongs to the recommendation region. 

We count the numbers of objects in the different regions, that is, RY (R, P, l t , W, r ∗t , r h ) , RN(R, P, l t , W, r ∗t , r h ) ,
P Y (R, P, l t , W, r ∗t , r h ) , P N(R, P, l t , W, r ∗t , r h ) , NY (R, P, l t , W, r ∗t , r h ) , and NN(R, P, l t , W, r ∗t , r h ) using Eq. (15) . 

The average three-way cost at(R, P, l t , W, r ∗t , r h ) is computed using Eq. (17) . 

Finally, we determine the upper threshold r ∗
h 

as 

r ∗h = arg min 

r ∗t ≤r h ≤r g 
at(R, P, l t , W, r ∗t , r h ) . (29)

5.4. Working example #3 

In this subsection, we explain how to obtain the recommendation threshold (r ∗
l 
, r ∗

h 
) -pair using the proportion-based ap-

proach. First, we compute the three-way threshold ( β∗, α∗)-pair based on three-way cost. Next, we compute the proportion

based on the actual rating matrix R and prediction matrix P . Finally, we compute the three-way recommendation (r ∗
l 
, r ∗

h 
) -

pair based on the proportion and the ( β∗, α∗)-pair. 

According to the cost matrix in Fig. 1 and the three-way decision model, we calculate α∗ and β∗ as 

α∗ = 

90 − 18 

(90 − 18) + (18 − 0) 
= 0 . 8 , 

β∗ = 

18 − 0 

(18 − 0) + (45 − 18) 
= 0 . 4 . 

Based on the actual matrix given in Table 1 and the prediction matrix presented in Table 2 , we compute the proportion

by changing r e . This involves three steps: (1) we count the number ES ( r e , s ) of prediction p between r e and r e + s in the

prediction matrix P ; (2) we count the number TS ( r e , s , l t ) of the actual rating r greater than l t from the corresponding

positions of the actual matrix obtained in the preceding step; (3) proportion PR ( r e , s , l t ) is equal to TS ( r e , s , l t ) divided by

ES ( r e , s ). The calculation results are given in Table 9 . 

Owing to the example’s small data set, we cannot obtain a three-way threshold pair. 

6. Experiments 

In this section, we report on the extensive computational tests carried out mainly to address the following questions. 

1. Does the loss of the regression-based binary recommendation change smoothly? 

2. Is the change in the recommendation threshold r c t obvious when considering misclassification costs? 

3. Do the two three-way recommendation approaches obtain the same threshold ( r ∗
l 
, r ∗

h 
)-pair? 

Question 1 aims to find the optimum point on the loss curve. That is, the loss decreases continuously on the left-hand

side of the point, and increases continuously on the right-hand side. Question 2 is aimed at the effect of the cost setting

on the recommendation threshold r c t while considering the different misclassification costs. Finally, Question 3 focuses on

whether the threshold pairs of the two three-way recommendation approaches are reliable. 

6.1. Data set 

In the experiments we used the well-known MovieLens data set, which is widely used in recommender systems (see,

e.g., [10,46] ). The database schema is as follows. 

• User ( userID , age, gender, occupation) 
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Fig. 2. Optimal recommender threshold: (a) slope one ( r ∗t = 3.4), and (b) k NN ( r ∗t = 3.6). 

Table 10 

Proportion of user-item ratings. 

Rating 1 2 3 4 5 

Proportion 0.06 0.11 0.27 0.34 0.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Movie ( movieID , release-year, genre) 

• Rating ( userID, movieID ) 

We used the version with 943 users and 1,682 movies. The data set consists of 10 0,0 0 0 movie ratings. The original rating

relation contains the rating of movies on a five-point scale. Each rating as a proportion of all ratings is given in Table 10 . 

Ratings greater than three account for 55% of all the ratings, while the rest account for 45%. There is a small proportion

of low ratings because ratings less than three account for 17% of all ratings. Despite all users having watched at least one

movie, the rating matrix is still sparse because no one has watched more than 45 percent of all the movies, and only 20

percent of the users have watched more than 10 percent of all the movies. 

6.2. Experimental design 

We designed three sets of experiments to answer the questions raised at the beginning of this section. 

Exp1. We determined the two-way recommendation threshold r ∗t based on the loss. 

Exp2. We determined the two-way recommendation threshold r c t while considering the different misclassification costs. 

Exp3. We determined the three-way recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair while considering both misclassification and

promotion costs. 

6.3. Results 

The following experimental results are presented to answer each of the questions raised at the beginning of the section.

The original set iteratively leaves one rating out for the test set, while training on the rest. 

6.3.1. Regression-based binary recommendation 

Fig. 2 illustrates the determination of the optimal recommendation threshold for loss minimization. There are three

curves: RN ( R , P , l t , r t ) denotes the number of objects in the false recommendation region ( RN ) vs. the recommendation

threshold ( r t ). NY ( R , P , l t , r t ) denotes the number of objects in the false non-recommendation region vs. the recommen-

dation threshold r t . RN(R, P, l t , r t ) + NY (R, P, l t , r t ) denotes the number of objects in two regions vs. the recommendation

threshold r t . RN ( R , P , l t , r t ) and NY ( R , P , l t , r t ) are monotonic, whereas RN ( R , P , l t , r t ) is entirely decreasing and NY ( R , P , l t ,

r t ) is entirely increasing. The losses of the three curves change continuously without “corners”; that is, the curves change

smoothly. Because the RN(R, P, l t , r t ) + NY (R, P, l t , r t ) curve is a convex function, there exists a unique minimum loss. We can

determine the recommendation threshold r ∗t based on the unique minimum loss. 

Fig. 2 (a) illustrates the determination of the optimal recommendation threshold using the slope one algorithm. The

unique minimum loss of RN(R, P, l t , r t ) + NY (R, P, l t , r t ) is 0.287, and thus, we obtain r ∗t as 3.4. 

Fig. 2 (b) illustrates the determination of the optimal recommendation threshold using the k NN algorithm. The unique

minimum loss of RN(R, P, l t , r t ) + NY (R, P, l t , r t ) is 0.333, and thus, we obtain r ∗t as 3.6. 
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Table 11 

Accuracy comparison of different approaches. 

Algorithm MAE Minimum loss 

Slope one 0.74 0.287 

k NN 0.8 0.333 

Difference 0 . 8 −0 . 74 
0 . 74 

= 8 . 1% 0 . 333 −0 . 287 
0 . 287 

= 16 . 0% 

Table 12 

Average misclassification cost and r c t for different ratios of λNY 

λRN 
. 

λNY 

λRN 
Average misclassification cost r c t 

Slope one k NN Difference Slope one k NN 

0.125 8.1 8.3 8 . 3 −8 . 1 
8 . 1 

= 2 . 5% 4.4 4.6 

0.25 13.4 14.2 14 . 2 −13 . 4 
13 . 4 

= 5 . 6% 4.1 4.2 

0.5 18.3 20.6 20 . 6 −18 . 3 
18 . 3 

= 12 . 6% 3.7 3.9 

1 19.4 22.5 22 . 5 −19 . 4 
19 . 4 

= 16 . 0% 3.4 3.6 

2 16.2 18.4 18 . 4 −16 . 2 
16 . 2 

= 13 . 6% 3.1 3.2 

4 11.1 11.9 11 . 9 −11 . 1 
11 . 1 

= 7 . 2% 2.7 2.2 

8 6.5 6.7 6 . 7 −6 . 5 
6 . 5 

= 3 . 1% 2.3 1.0 

Table 13 

Two- vs. three-way average-cost comparison for different promotion cost settings. 

Promotion cost ( β∗ , α∗) Algorithm ( r ∗
l 
, r ∗

h 
) Two-way Three-way Decrease 

18 (0.4, 0.8) Slope one (3.2, 4.1) 18.3 14.9 18 . 3 −14 . 9 
18 . 3 

= 18 . 6% 

k NN (3.4, 4.2) 20.6 16.1 20 . 6 −16 . 1 
20 . 6 

= 21 . 8% 

22.5 (0.5, 0.75) Slope one (3.4, 3.9) 18.3 16.8 18 . 3 −16 . 8 
18 . 3 

= 8 . 2% 

k NN (3.6, 4.1) 20.6 18.5 20 . 6 −18 . 5 
20 . 6 

= 10 . 2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 compares the performance of the slope one and k NN-based approaches, in terms of MAE and minimum loss. The

MAE difference between the two approaches is 8.1%, whereas the difference in minimum loss is 16.0%. The misclassification

is obviously greater than the MAE. 

Based on the above analysis, the following conclusions are presented: (1) the loss curve is a convex function, and there-

fore it has a unique minimum value; (2) the optimal recommendation threshold is associated with the algorithms; (3) there

is an obvious difference between the loss due to misclassification and the MAE (16% vs. 8.1%). 

6.3.2. Misclassification cost minimization recommendation 

The total of the two non-zero misclassification costs is set to 135. For different situations, we change the ratio of the

two non-zero misclassification costs from 0.125 to 8. Assuming a ratio of 0.5 for example, the misclassification cost for

recommending uninteresting items is 90, while the misclassification cost for non-recommending interesting items is 45. 

Table 12 shows the optimal recommendation thresholds under the different settings of the two non-zero misclassification

costs. We compute the minimal average misclassification cost for each setting using the trichotomy method. Assuming a

ratio of 0.5 for example, the minimal average misclassification cost is 18.3 using the slope one algorithm with r c t = 3 . 7 . 

We present the following conclusions based on Table 12 : (1) the change in the optimal recommendation threshold r c t is

gradual and linear with an increase in the ratio, using both the slope one and k NN algorithms; and (2) the average of the

asymmetric misclassification costs is lower than that of the symmetric ones. 

6.3.3. Three-way-decision-based recommendation 

In practice, different values can be assigned to misclassification and promotion costs. In Fig. 1 , the two nonzero misclassi-

fication costs are set to 90 and 45, respectively. Promotion cost is set to 18 or 22.5 in the comparative experiments as shown

in Table 13 . If promotion cost is set to 18, we obtain the optimal threshold pair of three-way decision as (β∗ = 0 . 4 , α∗ = 0 . 8) ,

whereas a setting of 22.5 yields (β∗ = 0 . 5 , α∗ = 0 . 75) . 

We designed four sets of experiments to consider different promotion costs and different regression-based algorithms.

Because similar results were obtained for different promotion costs, we only present the results with the promotion cost set

to 18 in Figs. 3 –5 . 

Fig. 3 illustrates the determination of the three-way threshold pair using the proportion-based approach. Here p is pre-

dicted using the slope one or k NN algorithm. The proportion PR is computed by Eq. (25) . The curve of PR with respect to p
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Fig. 3. Three-way threshold pair: (a) slope one ( r ∗
l 

= 3.2, r ∗
h 

= 4.1), (b) k NN ( r ∗
l 

= 3.4, r ∗
h 

= 4.2). 

Fig. 4. Threshold pair of three-way growth algorithm: (a) r ∗
l 

= 3.2, (b) r ∗
h 

= 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is basically gradual and linear. We can determine the three-way recommendation ( r ∗
l 
, r ∗

h 
)-pair based on the values of α∗ and

β∗. 

Fig. 3 (a) shows the optimal three-way threshold pair obtained by the slope one algorithm. Given that ( β∗, α∗) is (0.4,

0.8), the three-way recommendation pair is calculated as ( r ∗
l 

= 3 . 2 , r ∗
h 

= 4.1). 

Fig. 3 (b) shows the optimal three-way threshold pair obtained by the k NN algorithm. Given that ( β∗, α∗) is (0.4, 0.8), the

three-way recommendation pair is calculated as ( r ∗
l 

= 3 . 4 , r ∗
h 

= 4.2). 

Fig. 4 depicts the minimizing search approach using the slope one algorithm. According to Table 12 , the optimal recom-

mendation threshold r c t is 3.7 when 

c NY 
c RN 

= 0.5. Fig. 4 (a) depicts the lowest recommendation threshold r ∗
l 

in the interval [1,

3.7]. We obtain r ∗
l 

= 3 . 2 based on the minimum average cost. Fig. 4 (b) depicts the highest recommendation threshold r ∗
h 

in

the interval [3.7, 5]. We obtain r ∗
h 

= 4 . 1 based on the minimum average cost. 

Fig. 5 depicts the minimizing search approach using the k NN algorithm. According to Table 12 , the optimal recommen-

dation threshold r c t is 3.9 when 

c NY 
c RN 

= 0.5. Fig. 4 (a) depicts the lowest recommendation threshold r ∗
l 

in the interval [1, 3.9].

We obtain r ∗
l 

= 3 . 4 based on the minimum average cost. Fig. 4 (b) shows the highest recommendation threshold r ∗
h 

in the

interval [3.9, 5]. We obtain r ∗
h 

= 4 . 2 based on the minimum average cost. 

Table 13 compares the two- vs. three-way average costs for different promotion cost settings. We compute the three-way

average cost based on the recommendation threshold ( r ∗
l 
, r ∗

h 
)-pair. Using the slope one algorithm, the three-way average cost

is 14.9 with a promotion cost of 18, and 16.8 with a promotion cost of 22.5. Using the k NN algorithm, the three-way average

cost is 16.1 with a promotion cost of 18, and 18.5 with a promotion cost of 22.5. The decrease in three-way average cost

compared with two-way average cost is between 8.2% and 21.8%. 

We present the following conclusions based on Figs. 3 –5 and Table 13 : (1) the three-way recommendation threshold

pairs obtained by the proportion-based and minimizing search approaches are the same; (2) the (r ∗
l 
, r ∗

h 
) -pair is relevant to

not only the cost matrix, but also the prediction algorithm; and (3) the average cost in the three-way decision model is

obviously less than the two-way model. 
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Fig. 5. Threshold pair of three-way growth algorithm: (a) r ∗
l 

= 3.4, (b) r ∗
h 

= 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4. Discussion 

We are now in a position to answer the questions raised at the beginning of this section: 

1. The loss of regression-based binary recommendation changes smoothly. 

2. The change in recommendation threshold r c t is obvious when considering misclassification costs. 

3. The two three-way recommendation approaches obtain the same threshold ( r ∗
l 
, r ∗

h 
)-pair with the same prediction algo-

rithm. 

7. Conclusion 

In this paper, we proposed a framework integrating three-way decision and a regression-based approach to suggest ap-

propriate recommender behavior with predicted numerical ratings. Regression-based binary recommendation is used to ob-

tain the optimal recommendation threshold. Considering misclassification and promotion costs, a binary recommendation

can be generated from the three-way recommendation. According to our experiments on the MovieLens data set, the loss of

regression-based binary recommendation changes smoothly and the two three-way recommendation approaches obtain the

same threshold ( r ∗
l 
, r ∗

h 
)-pair with the same prediction algorithm. 
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