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Formal concept analysis was first used in collaborative filtering for over one decade. 
Popular approaches are based on superconcept-subconcept relationship or boolean matrix 
factorization. In this paper, we design a heuristic approach to construct a set of 
approximately strong concepts for recommendation. Here strong refers to not only big 
intent to ensure the similarity among users, but also big extent to ensure the stability 
of user groups. First, we use the intent threshold as the constraint and the area as the 
optimization objective to obtain approximately strong concepts. Second, we generate pre-
recommendations based on the local popularity of the items implied by each concept. 
Finally, we determine the actual recommendation according to the number of times the 
item is pre-recommended to the user. Experiments have been undertaken on five popular 
datasets with different versions. Results show that our algorithm has lower runtime 
and/or higher recommendation quality compared with approaches based on concept lattice, 
matrix factorization, k-nearest neighbors, item-based collaborative filtering and boolean 
matrix factorization.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Formal concept analysis (FCA) [36] is a powerful tool for data analysis. It models the binary relational data as the formal 
context, strongly related object-attribute pairs as formal concepts, and the structure organizing all concepts as the concept 
lattice. Hence it has been widely used in machine learning [18,26,28], data mining [8,15,32] and knowledge discovery [34,
51]. In addition, it is also combined with other theories such as Fuzzy sets [2,30], granular computing [22,23,38], Rough sets 
[35,46], and three-way decisions [39,42,47] to provide sophisticated solutions for more fields such as cognitive computing 
[10,40].

The construction of concept lattice is the bottleneck of FCA while applied to real data. For example, given a formal context 
with thousands of objects and attributes, we need to construct a lattice containing millions of concepts. One approach is to 
design parallel methods [16] to speed up the construct process. However, the space complexity is not decreased. The other 
approach, which is more popular, is to reduce the size of the concept lattice. Granular-computing-based methods [31,37]
consider sub-context, especially different attribute subsets each time when generating concepts. Clustering-based methods 
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Fig. 1. Comparison of recommendations based on the concept lattice and a concept set. The left part is the original formal context. (a) is the complete lattice 
with 40 concepts. (b) indicates the relationship between users and items revealed by all relevant concepts and concept sets. (c) is the recommendation, 
where + indicates recommend, and − indicates not recommend. (d) is a concept set. (e) indicates the relationship between users and items revealed a 
concept set. (f) shows the recommendations with a concept set.

[17,21,33] merge the nodes of each equivalent class or each cluster into one node in the modified lattice. Similarity-based 
methods [1,53] remove redundant nodes according to similarity measures. Threshold-based methods [24] use thresholds 
of intent importance and intent deviation to filter out unqualified concepts. Naturally, they do not generate the complete 
concept lattice.

Recommender systems are a natural application of FCA because implicit rating data can be modeled as a formal context. 
At least three types of methods have been designed. Lattice-based methods [6,52] need to construct the complete concept 
lattice or a part of it. Entry-level concepts [6], or association rules generated from the lattice [52] are used for recommen-
dation. These methods are relatively slow due to the construction of the lattice. Decomposition-based methods [12] use 
boolean matrix factorization techniques such as GreConD [3,13] to obtain user and item subspaces, and then use the user 
subspace to calculate the k-nearest neighbors. These methods require a heuristic algorithm to deal with the NP-hard prob-
lem. Concept-based methods [11] use efficient algorithms such as D-miner [4] to construct a set of concepts that meet the 
extent and intent size constraints, and then mine association rules for recommendation. Compared with mining association 
rules from the original context, these methods focus on part of the data each time. Therefore, the efficiency and quality of 
the recommendation algorithm are improved. However, these three types of methods do not directly take advantages of the 
information embedded in each concept for recommendation.

Three-way decision and granular computing provide new solutions to recommender systems. Three-way decision [43,
41,42] is used to deal with the situation where there are three possible decisions, namely accept, reject and wait-and-see. 
Recommender systems based on three-way decision obtain lower cost by providing the promotion action [48], or higher 
accuracy by providing the delayed decision [29,49]. Granular computing is a general computational theory for information 
processing and affected by granular structure. Based on the multi-level structure of information, recommender systems use 
different granular information for recommendation [25,45]. Sequential three-way decision [41,43,50] is the integration of 
three-way decisions and granular computing. The model makes three-way recommendations at each granularity level and 
moves delayed decision to the next finer granularity level [25,44].

In this paper, we propose an efficient heuristic method to construct a concept set for recommendation. Our method 
takes advantage of the approximation ability of the concept set to formal context information. Therefore, it focuses on 
mining a high-quality concept set. Fig. 1(a)-(c) show recommendations based on the concept lattice, and (d)-(f) show the 
recommendation process based on a concept set.

The new scheme consists of two stages. The first stage is the concept set construction, which generates a series of 
concepts with big intent and extent while satisfying their coverage of the entire set of users. With N users and M items, 
the time complexity of the direct approach to the construction of all concepts is O (N2M) [7]. Some enhanced approaches 
(see, e.g., [35,20,9]) decrease it using some pruning techniques. However, they are still exponential in the worst case. In 
contrast, our heuristic approach takes only O ((N + M)N M) time, which is very efficient. The second stage is concept-based 
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Table 1
An exemplary formal context.

O A

m0 m1 m2 m3 m4 m5 m6 m7

u0 1 0 0 0 1 0 0 1
u1 1 0 1 1 1 0 1 0
u2 0 1 0 1 1 0 1 1
u3 0 1 0 1 1 1 1 0
u4 1 0 0 0 1 1 0 1
u5 1 1 1 0 1 1 0 0
u6 0 1 1 1 0 0 0 1
u7 1 1 0 1 1 0 0 1
u8 0 0 1 1 1 0 1 0
u9 1 0 0 1 0 0 0 1

recommendation. Since a concept is a pair consisting of a set of users and a set of items, the users in the concept can be 
considered as a group. These users share the same preferences on these items. So the same other items are recommended to 
users by aggregating the preferences of members in the concept. The recommendations of multiple concepts are combined 
for the user. As each concept is independent in the process of recommendation, the approach is also very efficient.

Experiments were conducted on sixteen datasets including sampled ones. The biggest dataset (MovieLens-1M) has 6,040 
users and 3,952 items. Results show that: 1) Our algorithm was significantly more efficient than the classical algorithm 
[7]. 2) Our algorithm only generated a small number of concepts. 3) The recommendation performance was significantly 
better than the conceptual neighborhood based algorithm [5], slightly better than matrix factorization [14], and comparable 
to k-nearest neighbors (kNN), GreConD-kNN (the combination of GreConD and kNN as suggested by [27]) and item-based 
collaborative filtering (IBCF). Especially in datasets with low sparsity, the recommendation quality of our algorithm is sig-
nificantly higher than the other four algorithms.

The rest of the paper is organized as follows. Section 2 first introduces the preliminary knowledge related to this re-
search. Section 3 presents and analyzes some key issues of this study. Section 4 describes the designs of the corresponding 
algorithms to handle these issues. Section 5 compares our algorithm with four existing algorithms. Section 6 concludes and 
points out some further works.

2. Preliminaries

In this section, we first introduce the preliminary knowledge of FCA. Then we introduce FCA-based recommendation.

2.1. Formal concept analysis

Formal context, concept, partial order and concept lattice are standard terms in FCA. Here we redefine them to suit 
recommender systems.

Definition 1. [36] (Formal context) A formal context is a triple T = (O , A, R), where O is a set of users, A is a set of items, 
and R ⊆ O × A is a binary relation.

If (u, m) ∈ R , we say that user u has rated the item m. We also let r(u, m) = 1 to denote that (u, m) ∈ R , and r(u, m) = 0
otherwise. Table 1 lists an exemplary formal context representing a movie rating data with 10 users and 8 movies.

Let E ⊆ O and I ⊆ A be a user group and an item group, respectively. A pair of dual operators are defined as

E� = {m ∈ A|∀u ∈ E, r(u,m) = 1}, (1)

I� = {u ∈ O |∀m ∈ I , r(u,m) = 1}. (2)

Definition 2. [36] (Concept) A pair C = (E, I) is called a concept of T = (O , A, R) iff E ⊆ O , I ⊆ A, E� = I , and I� = E .

E(C) = E is the extent of the concept, and I(C) = I is the intent of the concept. For example, C = ({u1, u7, u9}, {m0, m3})
is a concept for the formal context depicted in Table 1. E = {u1, u7, u9} is the extent and I = {m0, m3} is the intent. When 
the table has no full rows and no full columns, there are two special concepts C1 = (O , ∅) and C2 = (∅, A).

Definition 3. [36] (Subconcept) Let C1 = (E1, I1) and C2 = (E2, I 2) be two concepts of T = (O , A, R). The concept C1 is 
called a subconcept of C2 (denoted by C1 ≤ C2) iff E1 ⊆ E2.

When C1 ≤ C2, C2 is also called a superconcept of C1. Naturally, in some cases, neither C1 ≤ C2 nor C2 ≤ C1 is true. 
Therefore ≤ defines a partial order between concepts.
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The hierarchy of all concepts given by the subconcept-superconcept relation is called the concept lattice. The concept 
lattice generated from Table 1 has 40 concepts. For real data with thousands of users and items, there are millions of 
concepts.

The definition of sparsity, which expresses the amount of information known about a formal context, is as follows.

Definition 4. (Sparsity) The sparsity of a formal context T = (O ,A,R) is given by

sp(T ) = |R|
|O | × |A| , (3)

where | · | represents the cardinality of the set.

For example, the sparsity of Table 1 is 0.5375. The sparsity of real data is often small, e.g., 0.0418 for the MovieLens-1M 
dataset.

2.2. FCA-based recommendation

There are at least three types of FCA recommended methods, namely lattice-based, decomposition-based and concept-
based methods. Lattice-based [6] methods take advantage of the lattice structure, especially the superconcept-subconcept 
relationship. The EN-CR [6] is a lattice-based method based on an entry-level concept lattice. The entry-level concept is 
unique for which u/m is a member of the extent/intent and u/m is not a member of the extent/intent of any subconcept/su-
perconcept. EN-CR walks the lattice, level-by-level, up from the target user’s entry-level concept to the supremum to find 
neighbor users. The recommendation is determined by the preferences of neighbor users.

Decomposition-based methods [12] obtain user and item subspaces using boolean matrix factorization techniques such 
as GreConD. Formally, let T = (O , A, R) be the formal context, and F = {(Ek, Ik)}K

k=1 be a set of concept. Let further AF
be an N × K matrix where (AF )i j = 1 if ui ∈ E j and 0 otherwise. Similarly, let BF be a K × M matrix where (BF )i j = 1 if 
m j ∈ Ii and 0 otherwise. According to [3], one can always construct F such that

R = AF × BF . (4)

Since finding the minimal F is NP-hard, a heuristic algorithm is often required. With the user subspace AF , one can find 
the k-nearest neighbors of users for recommendation.

Concept-based methods [11] use efficient algorithms such as D-miner [4] to construct a set of concepts that meet the 
extent and intent size constraints, and then mine association rules for recommendation. Compared with mining association 
rules from the original context, these methods focus on part of the data each time. Therefore, the efficiency and quality of 
the recommendation algorithm are improved.

3. Problem decomposition and analysis

The aim of a recommender system is to provide users with accurate recommendations based on existing information. 
Given a rating system represented by a formal context, the recommendation problem can be stated as follows.

Problem 1. Formal context based recommendation
Input: A formal context T = (O , A, R), the training set Rr ⊂ R , the testing set Rt = R − Rr ;
Output: Recommendations L ⊂ R \ Rr ;
Optimization objective: max F 1(L, Rt).

The inputs include the formal context, the training and testing sets. The training set is randomly selected 80% from the 
formal context, and the rest is the testing set. As a standard of the training-stage scenario, Rr is used to construct concepts. 
Rt is employed to evaluate the performance of the recommendation at the testing stage.

The output is the recommendations to all users. Naturally, there should be no intersection between recommended results 
and known ratings, hence L ⊂ R \ Rr .

The optimization objective should consider both correct and missed recommendations. The precision is given by

pre(L, Rt) = |L ∩ Rt |
|L| , (5)

the recall is given by

rec(L, Rt) = |L ∩ Rt |
|Rt | , (6)

and the F 1 measure is given by
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F 1(L, Rt) = 2 × pre(L, Rt) × rec(L, Rt)

pre(L, Rt) + rec(L, Rt)
. (7)

Here, a concept is a pair consisting of a set of users and a set of items. These users share the same preferences on 
these items. From the perspective of CF, they may also share the same preferences on some other items. Hence we will 
decompose Problem 1 into two sub-problems, which will be illustrated in the following two subsections.

3.1. Minimal concept set construction

Constructing a set of concepts representing the formal context is the first sub-problem, as stated follows.

Problem 2. Minimal concept set construction
Input: The training formal context Tr = (O , A, Rr), the intent threshold α;
Output: Concept set C ;
Constraints:

1)
⋃

(E,I)∈C E = O ;
2) ∀(E, I) ∈ C,|I | ≥ α;

Optimization objective: min |C |.

The inputs include the training data Tr = (O ,A,Rr) and the user-specified intent threshold α. We require that α be no 
greater than the minimum number of movies rated by any user. Its setting will be discussed in the experimental section. 
The output is a concept set. A user/item may be included in different concepts. In fact, a user may share some preferences 
with a group of users in some aspects and other preferences with other user groups. This phenomenon is also valid for 
items.

The first constraint indicates that the concept set covers all users of T . It guarantees that each user belongs to at least 
one concept. The second constraint indicates that the intent scale of the concept should not be less than α. From the 
perspective of the recommender system, recommendations only make sense when there are enough common items among 
users.

The optimization objective is to minimize the number of concepts. The goal is to obtain a more concise representation 
to improve the generalization of the model.

Now we analyze the complexity of Problem 2. Let Cα be the set of all concepts with intent no less than α. For simplicity, 
we do not consider the time complexity of constructing this set. Since each user has rated at least α movie, we have 
∪(E,I)∈Cα E = O . In addition, due to the uncertainty of user behavior, E can be any non-empty subset of O . Now we need to 
handle the classic set covering problem (SCP), which is NP-complete. Because a partial case of the Problem 2 is NP-complete, 
the problem itself is NP-hard.

The key issue of Problem 2 is how to build high-quality concepts. We define an indicator to measure the quality of 
concept.

Definition 5. (Area of concept) The area of concept C = (E, I) is

S(C) = S(E, I) = |E| × |I |. (8)

The area of a concept is determined by its extent and intent. A large extent indicates that the users have many neighbors, 
while a large intent indicates that the concept has high similarity and strong stability. Consequently, the strong concept is 
defined as follows.

Definition 6. (Strong concept) Let C(T ) be the set of all concepts of a formal context T = (O , A, R), C(T , u, α) = {C ∈
C(T )|u ∈ E(C), |I(C)| ≥ α} be all concepts satisfying the intent threshold α for user u. The strong concept for user u is

argmax
C∈C(T ,u,α)

S(C). (9)

Note that the strong concept may not be unique to the user.

3.2. Concept set based recommendation

Concept set based recommendation is the second sub-problem. Before analyzing it, we should first introduce item popu-
larity which is widely applied to various recommendation scenarios especially user cold start. It usually refers to the number 
of users who rated it. For concept-based recommendation, we are more concerned with the popularity of the item within 
the concept.
123



Z.-H. Liu, Q. Zhao, L. Zou et al. International Journal of Approximate Reasoning 146 (2022) 119–132
Algorithm 1 Heuristic concept set construction (HCSC).
Input: A formal context T = (O , A, R), the intent threshold α.
Output: A concept set C .

1: C ← ∅, P ← O ; //Initialization
2: while (P = ∅) do
3: s = 0; //Current area
4: I ← ∅; //The intent of the current concept
5: u∗ = arg maxu∈P |{p}�|; //The user who rated most movies
6: m∗ = arg maxm∈{u}� |{m}�|; //The most popular item rated by u
7: I = I ∪ {m∗};
8: while (true) do
9: m∗ = arg maxm∈({u}�\I) |(I ∪ {m})�|;

10: s′ = S((I ∪ {m∗})�, I ∪ {m∗}); //New area
11: if ((s′ > s) ∨ (|I | + 1 < α)) then
12: I = I ∪ {m∗}; //Update
13: s = s′;
14: else
15: break;
16: end if
17: end while
18: C = (I�, I); //A new concept
19: C = C ∪ {C}; //Add to the concept set
20: P = P − E(C); //Remove processed users
21: end while
22: return C ;

Definition 7. (Local popularity) In a formal context T = (O , A, R), the local popularity of m ∈ A wrt. concept C = (E, I) is

lp(C,m) = |{m}� ∩ E|
|E| . (10)

The problem of concept-based recommendation is defined as follows.

Problem 3. Concept set based recommendation
Input: The training formal context Tr = (O , A, Rr), the testing formal context Tt = (O , A, Rt), concept set C and recom-
mendation threshold β;
Output: Recommendations L;
Constraint: ∀C ∈ C , ∀u ∈ E(C), m ∈ A − {u}�, lp(C, m) ≥ β;
Optimization objective: max F 1(L, Rt).

The inputs include training and testing sets, a concept set and the recommendation threshold. In this stage, Tr is used 
to determine which items need to be recommended. Tt is used to evaluate the performance of the recommendation. The 
concept set is derived from the first stage. The recommendation threshold β is specified by the expert.

The output is the recommendations represented by a matrix. Naturally, existing ratings should not be considered.
The constraint indicates the requirement for recommending items to users. It compares the item’s local popularity with 

the recommendation threshold β . The recommendation for each user is determined by related concepts.
The optimization objective is to maximize the recommendation metrics F 1, which is calculated through comparing the 

testing set with the recommendations.

4. The proposed approach

In this section, we first present two algorithms to handle Problems 2 and 3, respectively. Then we analyze their time 
complexities. Finally we illustrate them with a running example.

4.1. Algorithm description

As discussed earlier, the problem of finding the optimal solution of Problem 2 is NP-hard. Hence we need to design a 
heuristic algorithm to handle it. Our main idea is to construct a concept with the greatest possible extent. The purpose is to 
cover the extent with as few concepts as possible. This construction requires only polynomial time. Since each new concept 
covers at least one user who has not been covered before, at least N concepts are needed. Consequently, the algorithm is 
polynomial.

Algorithm 1 lists a heuristic concept set construction (HCSC) algorithm which constructs a set of strong concepts covering 
all users. While constructing each concept, the heuristic information is the area of the concept. When the intent threshold 
is reached and the area reaches the maximal, a concept will be generated for the user.
124



Z.-H. Liu, Q. Zhao, L. Zou et al. International Journal of Approximate Reasoning 146 (2022) 119–132
Algorithm 2 Concept set based recommendation (CSBR).
Input: A formal context T = (O , A, R), a concept set C and the recommendation threshold 0 < β < 1.
Output: Prediction matrix L = (li j)|O |×|A| .

1: L|O |×|A| ← 0, Q |O |×|A| ← 0; // Initialization
2: for (each u ∈ O , m ∈ A) do
3: for (u ∈ C ∈ C ) do
4: if ((r(u, m) = 0) ∧ lp(C, m) ≥ β) then
5: qum = qum + 1; //Record the number of recommended concepts
6: end if
7: end for
8: end for
9: for (each u ∈ O , m ∈ A) do

10: if (qum ≥ 2) then
11: lum = 1; //Recommend item m to u
12: end if
13: end for
14: return L;

Table 2
Time complexity of Algorithm 1.

Lines Complexity Description

Line 2 O (N) User set O has N users.
Line 5 O (N M) Select a user with the most number of items.
Line 6 O (M) Select the most popular item rated by the user.
Lines 8-17 O ((N + M)M) Construct a strong concept.

Total O (N) × (O (N M) + O (M) + O ((N + M)M)) = O ((N + M)N M)

Lines 2-21 show the process of building the concept set. Lines 3-4 correspond to the initialization phase. Line 5 chooses 
a user with the maximal number of items as the representative. Lines 18-19 obtain a new concept and add it to the concept 
set. Line 20 removes those users included in the extent from the representative set.

Specifically, Lines 6-17 construct a strong concept for user u. Lines 6-7 show the process of selecting the most popular 
item rated by u as the initial intent. Lines 8-17 scan the user’s item set and update the intent. Line 9 selects an item that 
combines the intent to cover the most users. This item comes from the item set rated by the user but not included in the 
intent. Line 10 computes the area of the current concept. Lines 11-16 correspond to the heuristic method. For lines 11-14, 
if the conceptual area increases or the intent size is less than α, they will all be updated.

It should be noted that by considering the area of concept, we are essentially dealing with a more complex problem. 
When the intents of all concepts are equal, this problem coincides with Problem 2.

We note that HCSC is similar to GreConD [3] in that: 1) both mine a set of concepts from a formal context; and 2) 
both are heuristic algorithms. However, they have the following differences. First, their optimization objectives are different. 
HCSC aims to generate a minimal set of concepts covering all objects, while GreConD aims to cover the formal context. 
Second, their heuristic information is different. HCSC uses the area of concept, while GreConD uses {y}↓↑ ⊕ y where y is 
an attribute. Therefore, HCSC is beyond a variant of GreConD.

Algorithm 2 is a concept set based recommendation (CSBR) algorithm. Concept set C is constructed by Algorithm 1, so 
a user is covered by at least one concept. The item recommended to the user needs to satisfy two conditions. On the one 
hand, an item will only be recommended using a concept if its local popularity in the concept exceeds the recommendation 
threshold. On the other hand, an item will only be recommended to the user if at least two concepts support it.

Line 1 is the initialization of L and Q . Lines 3-7 count the number of times each item is recommended. Line 3 performs 
calculations on each concept of the user. Lines 4-6 calculate the local popularity of the item within the concept. When the 
local popularity is greater than β , this concept recommends the item. Lines 9-13 remove items that have only one concept 
recommendation. Line 14 returns a collection of recommended items for respective users.

4.2. Time complexity analysis

Solving Problem 1 requires two stages. One is to generate a set of concepts, and the other is to make recommendations. 
Thus, the time complexity is equal to the sum of Algorithms 1 and 2.

Proposition 1. Let N and M be the number of users and items, respectively. For Algorithm 1, the time complexity is O ((N + M)N M).

Proof. Table 2 lists the time complexity of each step in Algorithm 1.

1) According to Line 20, each time at least one user is removed from P . Hence the main loop indicate by Line 2 takes 
O (N) of time.
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Table 3
Time complexity of Algorithm 2.

Lines Complexity Description

Line 2 O (N M) Check all user-item pairs.
Line 3 O (N) Traverse all concepts that contain the user.
Lines 4-6 O (N) Compute the local popularity of the item.
Lines 9-13 O (N M) Traverse all items of all users.

Total O (N M) × O (N) × O (N) + O (N M) = O (N3 M)

2) Calculating the number of items for one user takes O (M) of time. Hence finding the user who rated most users takes 
O (N M) of time.

3) Selecting the most popular item rated by the user as the intent takes O (M) of time.
4) Obtaining the intent of a strong concept takes O (N M) of time. Hence, the time complexity for obtaining a strong 

concept is O ((N + M)M).

Therefore, the time complexity of Algorithm 1 is

O (N) × (O (N M) + O (M) + O ((N + M)M)) = O ((N + M)N M)). (11)

This completes the proof.

Proposition 2. For Algorithm 2, the time complexity of the recommendation is O (N3M).

Proof. Table 3 lists the time complexity of each step in Algorithm 2.

1) Checking all user-item pairs takes O (N M) of time.
2) A user is contained in at most N concepts. Hence checking all concepts that contain the user takes O (N) of times.
3) Computing the local popularity of an item requires traversing all users in the concept. Hence the time complexity is 

O (N).
4) Checking all user-item pairs again takes O (N M) of time.

Therefore, the time complexity of Algorithm 2 is

O (M) × O (N) × O (N) + O (N M) = O (N3M). (12)

This completes the proof.

4.3. A running example

We show a running example of HCSC and CSBR, respectively. Given the formal context listed in Table 1, let the intent 
threshold α = 2, and recommendation threshold β = 0.5. Fig. 2 illustrates the process of the algorithms.

In HCSC, we select the user with the largest number of items as the representative and construct a concept for it. 
Through the computation in Step 1, we first take u1 as a representative. Then we construct a strong concept for user u1 in 
Step 2. User u1 purchased five items which are m0, m2, m3, m4 and m6. Among them, m4 is the most popular item with 
8 users. Hence m4 is the first item to be added into the intent I . At the same time, the corresponding user set {m4}� =
{u0, u1, u2, u3, u4, u5, u7, u8}, and the area S({m4}�, {m4}) = 8. Then, we combine the remaining items of u1 with the intent. 
We can find the combination of m0 and m4 with the most users. Adding m0 into the intent, the updated extent {m0, m4}� =
{u0, u1, u4, u5, u7}. At this time, the alternative concept area is 10, which is larger than the previous area. Hence, according 
to the above selection strategy, we continue to construct concept on the basis of ({u0, u1, u4, u5, u7}, {m0, m4}). Finally, 
a strong concept C0 = ({u0, u1, u4, u5, u7}, {m0, m4}) is obtained. Repeating Step 2, we can get a set of strong concepts 
covering all users.

In CSBR, we first connect each user with their concept. Then we calculate the popularity of the item. When the local 
popularity of item is no less than β , it would be recommended. For example, the local popularity of m2 in concept C0 is 0.4, 
which is greater than β . Therefore, concept C0 supports the recommendation of item m2. Through the above calculation, we 
can get the number of supporting concepts for each item. If this number is less than 2, the recommendation is discarded. 
For example, the number of supporting concepts for m2 and m5 are 2 and 1, respectively. Hence only m2 is recommended 
to user u7.

5. Experiments

In this section, we conduct a series of experiments to address the following questions:
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Fig. 2. A running example of our algorithm.

Table 4
Datasets information.

Dataset Users Items Sparsity

MovieLens1 200 420 0.0514
MovieLens2 200 420 0.0725
MovieLens3 200 420 0.0915
MovieLens-100K 943 1,682 0.0630
FilmTrust 1,508 2,071 0.0113
EachMovie-2ku 2,000 1,648 0.0114
EachMovie-3ku 3,000 1,648 0.0117
MovieLens-1M 6,040 3,952 0.0418
Jester1 2,000 100 0.0750
Jester2 2,000 100 0.1000
Jester3 2,000 100 0.1250
Jester4 2,000 100 0.1500
Jester5 2,000 100 0.1750
Jester6 2,000 100 0.2000
Jester7 2,000 100 0.2250
Jester8 2,000 100 0.2500

1) Does HCSC reduce the number of concepts and speed up the concept construction process?
2) Is there an optimal setting of β on any dataset?
3) Is the concept set appropriate for recommendation?
4) Can CSBR improve the quality of recommendation?

5.1. Datasets

Table 4 summarizes 8 movie recommendation datasets and 8 joke datasets, including sampled ones, used in our exper-
iments. They are divided into two types depending on their size. MovieLens1 to MovieLens3 are small datasets with 200 
users and 420 items. They are used in comparison experiments with two classical concept lattice-based algorithms. The 
remaining datasets have more users and items. EachMovie-2ku and EachMovie-3ku are randomly selected from EachMovie. 
FilmTrust, MovieLens-100K and MovieLens-1M are existing movie recommendation datasets. These five datasets are used 
for comparison with the collaborative filtering algorithms. Jester1 through Jester8 are sampled from the Jester dataset. They 
have the same number of users and items, and have different data sparsity.
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Fig. 3. Trend in the number of concepts related to α.

Table 5
Comparison with ICFL and CbO in concept construction.

Dataset Number of concepts Runtime

HCSC ICFL CbO HCSC ICFL CbO

MovieLens1 103 34,503 34,503 1 s 2 min 8 min
MovieLens2 50 269,893 269,893 1 s 161 min 66 min
MovieLens3 55 1,365,753 1,365,753 1 s 24+h 235 min

5.2. Concept set construction

In experiment, we first observe the effect of the intent threshold α on concept construction. Then we compare HCSC 
with ICFL [7] and CbO [19] in terms of the number of concepts and the runtime. Fig. 3 illustrates the trend in the number 
of concepts related to α. Here we observe that the number of concepts increases with the increase in α. This trend is 
obvious when α is relatively small. However, when α is greater than 8, the number of concepts becomes relatively stable. 
For datasets of the same size, sparsity also affects the number of concepts. The sparsest dataset MovieLens1 has the largest 
number of concepts.

Table 5 shows the number of concepts and the runtime of HCSC, ICFL and CbO. Comparative experiments are performed 
on MovieLens1 to MovieLens3. The intent threshold α is 2. The results show that HCSC generates significantly fewer con-
cepts than ICFL and CbO.

5.3. Recommendation

In this subsection, we first analyze the impact of the recommendation threshold for CSBR. Then we compare the effi-
ciency of CSBR and LBRA. Finally, we compare the recommendation quality of CSBR and four collaborative filtering methods.

5.3.1. Impact of the recommendation threshold
Fig. 4 shows the impact of the recommendation threshold on the performance of CSBR. The performance indicator is F1, 

and the recommendation threshold β ranges from 0.1 to 0.7. There is a tradeoff while setting β . In general, CSBR performs 
best when β is 0.4 or 0.5. Specifically, when β = 0.5, the best results were obtained in 2 out of the 3 experiments. Therefore, 
we will let β = 0.5 in the following experiments.

5.3.2. Comparison with a lattice-based algorithm
The lattice-based recommendation algorithm (LBRA) first constructs a complete concept lattice using ICFL. Then, the 

user’s candidate item set is obtained through the union of the intent of these concepts. Finally, according to the similarity 
between the items in the candidate item set and the target user, the top k items with highest similarity to the target user 
are recommended. It should be noted that the concept lattice constructed by LBRA is the same as the CbO algorithm.

Three sampled datasets are employed, including MovieLens1, MovieLens2 and MovieLens3. Three performance indicators 
are used, including Precision, Recall and F1. According to the above experimental results, the recommended thresholds of 
the three datasets are 0.4, 0.5 and 0.5 respectively. LBRA uses Jaccard similarity to find neighbors.

Fig. 5(a) shows the precision comparison. For three sampled datasets, the CSBR obtains the best precision on two 
datasets, MovieLens1 and MovieLens2. Fig. 5(b) shows the recall comparison. CSBR performs well in MovieLens1 and Movie-
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Fig. 4. Impact of the recommendation threshold β .

Fig. 5. Comparison with LBRA.

Lens3. In Movielens1 and Movielens3, the recall for CSBR is more than twice as high as for LBRA. Fig. 5(c) shows the F1 
comparison. CSBR is higher than LBRA in all datasets. Combining the experimental results in Table 5 and Fig. 5, it can be 
seen that CSBR not only has higher time efficiency but also better recommendation effect than LBRA.

5.3.3. Comparison with collaborative filtering methods
CSBR is compared with four collaborative filtering algorithms, including matrix factorization, kNN, GreConD-kNN and 

IBCF. Matrix factorization implements recommendation by matching the latent factors of users and items. kNN is a recom-
mendation method for merging the preferences of k nearest neighbors. GreConD-kNN utilizes the user subspace and the 
similarity between users to implement recommendation. In contract, IBCF takes advantages of the similarity between items. 
For matrix factorization, we adopt the best settings given in the experiments. For kNN, GreConD-kNN and IBCF, we use 
Jaccard for user or item distance calculation. Table 6 shows the experimental results of CSBR compared with other algo-
rithms. In the comparative experiment with matrix factorization, CSBR has a better recommendation effect. In the precision 
comparison, CSBR is better than matrix factorization in four of the five datasets. This phenomenon is particularly obvious in 
the FilmTrust dataset. In all datasets, the recall and F1 value of CSBR are higher than matrix factorization. There are a few 
cases in which CSBR is worse than the last three algorithms. For example, the last three algorithms have a better F1 than 
CSBR in MovieLens-100K and MovieLens-1M datasets. In the remaining datasets, the performance of CSBR is better than 
them. For FilmTrust, the F1 of CSBR reaches 0.5445, which is the highest value among other algorithms.

Fig. 6 compares the performance of five algorithms under different data sparsity. The experiment is conducted on 8 
datasets, these data sets have the same number of users and items, but the data sparsity increases sequentially. In 8 sampled 
datasets, all five algorithms choose the optimal F1 for comparison. It can be observed from Fig. 6 that as the sparsity of the 
dataset increases, the F1 values of all algorithms also increase. The growth rate of CSBR is much higher than that of matrix 
factorization, GreConD-kNN and IBCF, which is similar to that of kNN. It is worth noting that when the data sparsity is low, 
the F1 of CSBR is higher than that of other algorithms. In the 8 datasets participating in the experiment, CSBR performs
best when the sparsity is lower than 0.175. Therefore, compared with other algorithms, CSBR is more suitable for datasets 
with lower sparsity.
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Table 6
Comparison with four algorithms. The best result is highlighted in boldface.

Dataset Evaluation index CSBR MF kNN GreConD-kNN IBCF

MovieLens-100K precision 0.2099 0.2254 0.1977 0.1976 0.2600
recall 0.2842 0.2298 0.3473 0.3473 0.2733
F1 0.2414 0.2276 0.2520 0.2519 0.2665

FilmTrust precision 0.5590 0.1244 0.3538 0.3953 0.8730
recall 0.5307 0.1640 0.3533 0.3502 0.3798
F1 0.5445 0.1415 0.3535 0.3714 0.5294

EachMovie-2ku precision 0.2552 0.2526 0.3006 0.2975 0.2202
recall 0.3114 0.2662 0.1754 0.1766 0.2809
F1 0.2805 0.2593 0.2215 0.2216 0.2790

EachMovie-3ku precision 0.2564 0.2554 0.2985 0.2982 0.2212
recall 0.3482 0.2793 0.1766 0.1770 0.4153
F1 0.2953 0.2668 0.2219 0.2222 0.2286

MovieLens-1M precision 0.2076 0.1227 0.1713 0.1713 0.1517
recall 0.2282 0.1285 0.3531 0.3531 0.3941
F1 0.2174 0.1256 0.2307 0.2307 0.2191

Fig. 6. Performance comparison under different data sparsity.

5.4. Discussions

Now we can answer the questions proposed at the beginning of this section.

1) HCSC reduces the number of concepts and shortens the time for concept construction. This is validated by Table 5. 
Through analysis, the number of concepts constructed by the HCSC algorithm does not exceed the number of users.

2) There is no optimal setting for β that is valid for any dataset. It is related to the size and sparsity of the dataset. This 
is validated by Fig. 3. The optimal setting for the threshold can be obtained by experiment or empirical value.

3) The concept set is applicable to recommendation. The three recommendation methods based on HCSC are close to, 
or even better than, the recommendation based on the concept lattice. This is validated by Table 5 and Fig. 5. Our 
algorithms are more efficient and accurate than LBRA. This demonstrates that it is not necessary to create the concept 
lattice for recommender systems.

4) Our approach can improve the quality of recommendation. Compared with other collaborative recommendation algo-
rithms, CSBR has better performance on some datasets, especially in datasets with lower sparsity. This is validated by 
Table 6 and Fig. 6.

6. Conclusions and further works

In our study, we have proposed a heuristic concept set construction for recommendation. The heuristic approach is 
designed to construct a high-quality concept set from the formal context. We combine the local popularity and similarity 
of the item to improve the recommendation effect. In our study, we have proposed a heuristic concept set construction for 
recommendation, which contains concept construction and recommendation. A heuristic approach is designed to construct a 
concept set to improve the efficiency. For the recommendation, the local popularity of an item and item similarity are both 
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combined to further improve the recommendation effect. With a collaborative filtering and matrix factorization baseline, 
the proposed method takes less time and performs better in recommendation. Experimental results show that the proposed 
method is more accurate than kNN and matrix factorization baseline. This study is innovative for the application of FCA in 
the field of recommender systems.

The following research topics deserve further investigation:

1) The rating information should be considered when constructing a concept set. Currently, the algorithm only considers 
whether the user has rated the item. It loses a lot of specific information in the dataset.

2) The intent of the concept should be applied to the recommendation. It is an important part of the concept, it represents 
the common preferences of users in the extent. Its application can promote personalized recommendations.

3) The heuristic information should be enriched. In current algorithm, the heuristic information is used to mine high-
quality concepts applied to the recommendation. According to different application scenarios, different heuristic infor-
mation can be set to obtain the desired concept.

To sum up, this paper proposes a comprehensive algorithmic framework that can be enriched in the future. We hope 
this work opens up new doors for applications of formal context analysis.
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