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a b s t r a c t

In many data mining and machine learning applications, there are two objectives in the
task of classification; one is decreasing the test cost, the other is improving the classifica-
tion accuracy. Most existing research work focuses on the latter, with attribute reduction
serving as an optional pre-processing stage to remove redundant attributes. In this paper,
we point out that when tests must be undertaken in parallel, attribute reduction is manda-
tory in dealing with the former objective. With this in mind, we posit the minimal test cost
reduct problem which constitutes a new, but more general, difficulty than the classical
reduct problem. We also define three metrics to evaluate the performance of reduction
algorithms from a statistical viewpoint. A framework for a heuristic algorithm is proposed
to deal with the new problem; specifically, an information gain-based k-weighted reduc-
tion algorithm is designed, where weights are decided by test costs and a non-positive
exponent k, which is the only parameter set by the user. The algorithm is tested with three
representative test cost distributions on four UCI (University of California – Irvine) data-
sets. Experimental results show that there is a trade-off while setting k, and a competition
approach can improve the quality of the result significantly. This study suggests potential
application areas and new research trends concerning attribute reduction.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Classification is one of the most important topics of data mining and machine learning research [43]. In some applica-
tions, data are stored in databases [13] or available without charge, and our objective is to build a classifier with high accu-
racy. In other applications, however, data are not free, and there is a test cost [19,36,25] for each data item. Therefore the
classifier should also exhibit low test costs. For example, in a clinic system, a patient is often required to undertake a number
of medical tests. With the results of these tests, the doctor obtains a diagnosis of whether or not the patient has a particular
illness or disease. In this case, money and/or time required to perform these tests are test costs; the probability of obtaining a
correct diagnosis is the classification accuracy.

Numerous classifier building approaches have been proposed to deal with the classification accuracy issues. Famous ones
[43] include decision trees [32,48], support vector machines [37], artificial neural networks [17], Bayes networks [11], and
k-nearest neighbor algorithms. Some researchers used the concept of misclassification cost [14,12,52] to extend classifica-
tion accuracy, since ‘‘the cost of erroneously diagnosing a patient as healthy may be much bigger than that of mistakenly
diagnosing a healthy person as sick’’ [52]. With this concept, researchers even proposed considering both issues together.
. All rights reserved.
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A representative approach is the so-called ICET (inexpensive classification with expensive tests) [36], which is a hybrid of the
GENESIS (genetic search implementation system) [15] genetic algorithm and the C4.5 [32] decision tree algorithm. In the
decision tree construction process, a test is selected only if the benefit, in terms of more accurate diagnosis and therefore
less misclassification cost, justifies the test cost [36]. However, this approach among many others is most effective when
tests can be undertaken sequentially, for then the choice of a test can take advantage of previous test results.

In this paper, we assume that all tests must be undertaken in parallel. This assumption, called the parallel test assump-
tion, has areas of application despite its simplifications. For example, when a casualty arrives by ambulance with a life-
threatening condition, time is very critical. The doctor cannot wait for test results to decide on a course of action or which
tests to further undertake. Instead, she/he has to immediately select those decisive tests. With this assumption, the learning
task is divided into two disjoint subtasks: choose a set of tests, and build the classifier. The first subtask deals with the test
cost issue, and the second one deals with the classification accuracy issue.

We focus on the test cost issue, with the classification accuracy issue serving as a constraint. One may argue that there is a
trade-off between these: the higher the costs, the more accurate is the diagnosis. This claim holds only if tests are insuffi-
cient. If existing tests can support the diagnosis, more tests are redundant. Therefore, in regard to the classification accuracy
issue, we only need to meet the constraint that there is a sufficiency of tests. Detail over the classification accuracy issue, i.e.,
the classifier building approach, are out of the scope of this paper.

Our problem is stated as follows: select a set of tests satisfying a minimal test cost criterion, and this test set should suf-
fice as the set of all available tests. The most correlative approach to this problem might be attribute reduction [28,20,21,46],
which has been investigated by the rough set [28] community. An attribute reduct is a subset of attributes/tests that are
jointly sufficient and individually necessary for preserving a particular property of the given information table [28,46].
According to this definition, an attribute reduct satisfies well our requirement of ‘‘sufficiency’’. Moreover, the optimization
objectives of attribute reduction, that include minimizing the number attributes [33], minimizing the attribute space [24],
etc., which can be easily revised to minimize the total test cost of the reduct.

Under the context of rough set theory, our problem is restated as follows: find a minimal test cost reduct. We argue that
this problem is not a simple extension of existing attribute reduction problems; these approaches were employed as an op-
tional pre-processing stage of other classifier building approaches mentioned earlier. Their objectives include improving the
efficiency of learning and improving the classification accuracy of the classifier. The former objective can be achieved when
the dimensionality of the data is very high [8]; however, the second objective cannot be achieved in a straight-forward man-
ner. In fact, there may exist many optimal reducts of a decision system, not all of being effective in producing good classifiers.
This is why dynamic reducts [3] are useful in obtaining stable reducts. In contrast, with the parallel test assumption, attri-
bute reduction is a mandatory stage in dealing with the test cost issue alone. The performance of respective approaches is the
total test cost, which is independent of the performance (e.g., coverage, accuracy, F-measure) of the classifier built
afterwards.

Before solving the problem, we define it formally. The definition of the problem involves the data model and the opti-
mization metric. As the latter has already been discussed above, we now focus on the former. In [25], we addressed the
common-test-cost issue and the sequence issue, building a hierarchy of six test-cost-sensitive decision systems. Under this
context we have assumed that tests are undertaken in parallel, and the sequence issue never arises. Hence the most gen-
eral model on which the problem is defined is the sequence-independent test-cost-sensitive decision system. Because
finding a minimal reduct is non-polynomial (NP)-hard [33], and finding a minimal reduct is a special case of finding a min-
imal test cost reduct, the problem is also at least NP-hard. Consequently, heuristic algorithms are needed to deal with such
problems.

We propose a framework of reduction algorithms. Practical algorithms are distinguished by the attribute significance
function. Since this work is the first step toward test-cost-sensitive attribute reduction, while designing substantial algo-
rithms, we shall here only consider a simpler model where test costs are independent from each other. Specifically, we de-
sign an information gain based k-weighted function, where weights are decided by test costs and a non-positive exponent k;
here k is introduced to adjust the influence of the test cost. Weighted reduction [44,45] is a general approach where the set-
tings of weights vary among applications. Naturally, setting k is much easier than setting weights for every attribute. We also
propose the competition approach; that is, run the algorithm with different k values, and choose the best reduct. With this
approach, the user does not have to know the best setting of k.

Four UCI datasets are employed to study the performance of our algorithm and identify better weighting schemes. As
there is no test cost setting in these datasets, we use three distribution functions to generate test costs for these. The three
functions correspond with different applications. We propose a metric to evaluate the quality of a reduct, and three metrics
to evaluate the performance of the algorithms. Experimental results show that our algorithm can generate a minimal test
cost reduct in most cases. Even if the reduct constructed is not optimal, it is still acceptable from a statistical point of view.
Experiments are undertaken using an open source software called COSER (cost-sensitive rough sets) [27].

The rest of the paper is organized as follows: Section 2 defines formally the minimal test cost reduct problem. Three dif-
ferent generators are designed to produce test costs subject to certain distributions. Four evaluation metrics are proposed,
one to evaluate the quality of a reduct, and the other three to evaluate the performance of a heuristic algorithm. Section 3
presents the algorithm framework and a substantial attribute significance function. Section 4 presents the experiment
process and lists some results. Finally, Section 5 presents conclusions and outlines further research trends.
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2. Problem definition

In this section, we define the minimal test cost reduct problem. First, we present the data model on which the problem is
defined. Then we illustrate a well-known definition of relative reducts. Finally we propose the optimization objective, that is,
minimizing the test cost.

2.1. Test-cost-independent decision systems

There are a number of test-cost-sensitive decision systems. In [25], we considered two issues related to test cost, viz. com-
mon-test-costing and sequencing, and proposed a hierarchy of six models. The common-test-cost issue arises while two or
more tests share a common test cost. For example, the cost incurred in collecting a blood sample from a patient is shared by a
set of blood tests [36,25]. The sequence issue arises while different testing sequences incur different test cost. For example, if
blood test B is performed after A, there is a common test cost associated with blood sample collection if test A requires the
greater blood sample; if the reverse sequence is employed, collection would have to be done again, and there is no common
test cost.

Since we have assumed that tests are undertaken in parallel, the sequence issue never arises in our problem. Hence we
only need to consider sequence-independent test-cost-sensitive decision systems, as defined as follows.

Definition 1 [25]. A sequence-independent test-cost-sensitive decision system (SITC-DS) S is the 6-tuple:
Table 1
An exem

Patie

x1

x2

x3

x4

x5

x6

x7
S ¼ ðU;C;D; fVaja 2 C [ Dg; fIaja 2 C [ Dg; c�Þ; ð1Þ
where U is a finite set of objects called the universe, C is the set of conditional attributes, D is the set of decision attributes, Va

is the set of values for each a 2 C [ D, and Ia : U ? Va is an information function for each a 2 C [ D; c� : 2C ! Rþ [ f0g is the
attribute subset test cost function, where Rþ is the set of positive real numbers.

Terms conditional attribute, attribute and test are already employed in the literature, and these have the same meaning
throughout this paper. U, C, D, {Va} and {Ia} can be displayed in a classical decision table. Table 1 is an example where
U = {x1,x2,x3,x4,x5,x6,x7}, C = {Headache,Temperature,Lymphocyte,Leukocyte,Eosinophil,Heartbeat}, and D = {Flu}.

The attribute subset test cost function c⁄ is central to test-cost-sensitive decision systems; for each A # C, one should
specify the value of c⁄(A). Therefore the simplest representation of c⁄ is to employ a vector
c� ¼ ½c�ð;Þ; c�ðfa1gÞ; c�ðfa2gÞ; . . . ; c�ðfa1; a2gÞ; . . . ; c�ðCÞ�: ð2Þ
The length of c⁄ is 2jCj, which in applications grows too fast with increasing jCj that only simple problems can be handled
using a computer. In [25] we developed an alternative representation of the test cost function that helps in making the model
applicable to real-world problems.

The SITC-DS is the most general model pertinent to the minimal test cost reduct problem, and more specifically to the
consideration of problem definition and algorithm framework design. It is, however, hard to deal with directly from an algo-
rithmic perspective. Since this work is the first step towards a resolution of our problem, we do not address here the com-
mon-test-cost issue when designing a substantive algorithm. Instead, we consider the simplest though most widely used
model [25] as follows.

Definition 2 [25]. A test-cost-independent decision system (TCI-DS) S is the 6-tuple:
S ¼ ðU;C;D; fVaja 2 C [ Dg; fIaja 2 C [ Dg; cÞ; ð3Þ
where U, C, D, {Va}, and {Ia} have the same meanings as in Definition 1, c : C ! Rþ [ f0g is the test cost function and
c�ðAÞ ¼
X
a2A

c�ðfagÞ ¼
X
a2A

cðaÞ; ð4Þ
where c⁄ is the attribute subset test cost function as defined in Definition 1.
plary decision table.

nt Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu

Yes High High High High Normal Yes
Yes High Normal High High Abnormal Yes
Yes High High High Normal Abnormal Yes
No High Normal Normal Normal Normal No
Yes Normal Normal Low High Abnormal No
Yes Normal Low High Normal Abnormal No
Yes Low Low High Normal Normal Yes
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Here we assume that the range of cost function c is non-negative ðRþ [ f0gÞ, which in practice is a natural assumption. A
test cost function can easily be represented by a vector c = [c(a1),c(a2), . . . ,c(ajCj)]. Table 2 presents a cost function. Tables 1
and 2 represent a TCI-DS.

Eq. (4) indicates that the various test costs are independent of one another. For example, if the doctor selects tests Tem-
perature, Leukocyte and Heartbeat, the total test cost would be $2 + $20 + $10 = $32 rather than some reduced cost. This is
why we call this type of decision system cost-independent.

2.2. Test cost setting

Most datasets from the UCI library [6] have no intrinsic test costs. For statistical purposes, we employ three different
schemes to produce random test costs. These schemes comprise: uniform distribution, normal distribution, and Pareto dis-
tribution. For simplicity, test costs are integers ranging from M to N, and are evaluated independently. In the following we
briefly discuss these distributions and present how to compute the respective random numbers.

2.2.1. Uniform distribution
A uniform distribution may be the most commonly used distribution. A discrete uniform distribution is a probability dis-

tribution whereby a finite number of equally-spaced values are equally likely to be observed [2]. Let cu denote a test cost
under the discrete uniform distribution.
Table 2
An exem

a

c(a)
Pðcu ¼ nÞ ¼ 1
N �M þ 1

; ð5Þ
where n is an integer in [M,N].
In many programming languages, it is straightforward to generate a uniformly distributed random number x on (0,1).

Then
cuðM;N; xÞ ¼ M þ bðN �M þ 1Þxc ð6Þ
takes discrete and uniformly-distributed values on [M,N].

2.2.2. Normal distribution
A normal distribution is often used to describe, at least approximately, any variable that tends to cluster around the mean

[2]. For example, the cost in collecting precipitation data from different gauge stations in an area is roughly normally-
distributed.

The normal distribution is described by the probability density function
f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

ðx�lÞ2

2r2 ; ð7Þ
where parameters l and r2 are the mean and the variance respectively. The standard normal distribution appears with l = 0
and r2 = 1.

Let x1 and x2 be uniformly distributed on (0,1), then
y1ðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
cosð2px2Þ ð8Þ
and
y2ðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
sinð2px2Þ ð9Þ
are two random numbers which have a normal distribution with l = 0 mean and r2 = 1. A faster and more robust approach is
given in [1].

Since we need a random number in [M,N], we let
yðM;N; x1; x2Þ ¼
M þ N þ 1

2
þ ay1ðx1; x2Þ; ð10Þ
where a is a non-positive number that permits adjustments in the distribution; we set a = 8 in our experiments.
plary cost vector.

Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat

$2 $2 $15 $20 $20 $10
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Finally
cnðM;N; x1; x2Þ ¼
M if y < M;

N if y > N;

byðM;N; x1; x2Þc otherwise

8><
>: ð11Þ
is bounded by [M,N] with a mean of approximately MþN
2 .

2.2.3. Pareto distribution
The Pareto distribution is a powerful law probability distribution that coincides with social, scientific, geophysical, actu-

arial, and many other type of observable phenomena [2]. In a clinic system, most tests (e.g., headache, temperature, heart-
beat and Lymphocyte) have relatively low cost, some tests (e.g., brain CT) have medium cost, and a few tests (e.g., arterio-
cerebral angiography) have very high cost. In a computer system, job sizes in terms of CPU requirement also have a similar
property [16].

In practice, the bounded Pareto distribution is more applicable. Let x be uniformly distributed on (0,1). Then
pðM;N; xÞ ¼ � xðN þ 1Þa � xMa � ðN þ 1Þa

MaðN þ 1Þa
� �� ��1=a

ð12Þ
is bounded Pareto-distributed on (M,N + 1), where a determines the shape of the distribution; we set a = 2 in our experi-
ments. Finally,
cpðM;N; xÞ ¼ bpðM;N; xÞc ð13Þ
is discrete, bounded, and Pareto-distributed on [M,N].
For convenience, in the following context, the discrete uniform distribution, the discrete bounded normal distribution and

the discrete bounded Pareto distribution are referred to as the Uniform distribution, the Normal distribution, and the Pareto
distribution, respectively.

2.3. Relative reducts

Concepts of reduct and relative reduct have been thoroughly investigated by the rough set community. The concept of
reduct is built on information systems, and is straightforward to apply. In contrast, the concept of relative reduct is built
on decision systems, and there are many different definitions, such as positive region reducts [28], maximum distribution
reducts [49], fuzzy reducts [20], b-reduct [56]. These definitions are equivalent if the decision table is consistent, but differ-
ent if otherwise. Furthermore, there are some extended concepts such as M-relative reducts [26], dynamic reducts [3], and
parallel reducts [9,10]. In some extensions of rough sets, i.e., covering-based rough sets [55], there are other definitions of a
reduct (see, e.g., [54,7]). A general definition of a reduct is the focus of [51].

In this paper, we only consider the original concept, i.e., positive-region-based reducts [28]. To present the definition, a
number of basic concepts of rough set theory are needed. Any ;– B # C [ D determines an indiscernibility relation I(B) on U.
A partition determined by B is denoted by U/I(B), or U/B for brevity. Let B X denote the B� lower approximation of X. The po-
sitive region of D with respect to B # C is defined as POSB(D) =

S
X2U/DB(X).

Definition 3. Any B # C is called a decision relative reduct (or a relative reduct for brevity) of S iff:

(1) POSB(D) = POSC(D), and
(2) "a 2 B, POSB�{a}(D) � POSC(D).

Conditions of the definition indicate that a reduct is (1) jointly sufficient and (2) individually necessary for preserving a
particular property (positive region in this context) of the decision system [28,51,46]. The set of all relative reducts of S is
denoted by Red(S). The core of the system S is the intersection of these reducts. Namely, core(S) = \Red(S). Core attributes
are of great importance to the decision system and should never be removed, except when information loss is allowed [46].

2.4. Minimal test cost reducts

Sometimes a number of reducts are needed. For example, dynamic reducts [3] and parallel reducts [9,10] are based on a
number of reducts and are more stable than any one of them. Genetic algorithms [42] are usually employed to produce base
reducts. In [41], to preserve more information of the decision system, a few fuzzy reducts are also required to produce fuzzy
decision trees.

In most applications, only one reduct is needed. Since there may exist many reducts, an optimization metric is needed.
Existing metrics include the number of attributes [29,38], the attribute space [23], etc. Naturally, the metric employed in this
work is the test cost of the reduct. In other words, we are interested in reducts with minimal test costs. We define reducts of
this type as follows.
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Definition 4. Let Red(S) denote the set of all relative reducts of a sequence-independent test-cost-sensitive decision system
S. Any R 2 Red(S) where c⁄(R) = min{c⁄(R0)jR0 2 Red(S)} is called a minimal test cost reduct.

There may exist a number of minimal test cost reducts. Our problem is to find any one of these; the new problem is called
the minimal test cost reduct problem. A minimal test cost reduct is also called an optimal reduct in this context. Note that this
problem is defined on SCITC-DS instead of more specific TCI-DS.

2.5. Evaluation metrics

One can develop many algorithms to deal with the minimal test cost reduct problem. Therefore, there is a need to define a
number of evaluation metrics so that performances can be compared. First of all, we need a metric to evaluate the quality of
one particular reduct. For example, if the test cost of the optimal reduct is $100, a reduct with test cost $110 is better than
another with $120. Since an algorithm can run on many datasets or one dataset with different test cost settings, we propose
three metrics from a statistical viewpoint. These are finding optimal factor, maximal exceeding factor, and average exceeding
factor.

2.5.1. Finding optimal factor
Let the number of experiments be K, and the number of successful searches of an optimal reduct be k. The finding optimal

factor (FOF) is defined as
op ¼ k
K
: ð14Þ
This metric is both qualitative and quantitative. First, it only counts optimal solutions. Second, it is computed statistically. In
our experiments, we generate different test cost settings for the same decision system. Therefore, we have as many test-cost-
sensitive decision systems as we need. This allows us to have enough data to obtain the finding optimal factor for statistics
purposes.

2.5.2. Exceeding factor
For a dataset with a particular test cost setting, let R0 be an optimal reduct. The exceeding factor of a reduct R is
ef ðRÞ ¼ c�ðRÞ � c�ðR0Þ
c�ðR0Þ

: ð15Þ
The exceeding factor provides a quantitative metric to evaluate the performance of a reduct. It indicates the badness of a
reduct when it is not optimal. Naturally, if R is an optimal reduct, the exceeding factor is 0.

To demonstrate the performance of an algorithm, statistical metrics are needed. Let the number of experiments be K. In
the ith experiment (1 6 i 6 K), the reduct computed by the algorithm is denoted Ri. The maximal exceeding factor (MEF) is
defined as
max
16i6K

ef ðRiÞ: ð16Þ
This shows the worst case of the algorithm given some data set. Although it relates to the performance of one particular re-
duct, it should be viewed as a statistical rather than an individual metric.

The average exceeding factor (AEF) is defined as

PK

i¼1ef ðRiÞ
K

: ð17Þ
Since it is averaged on K different test-cost-sensitive decision systems, it shows the overall performance of the algorithm
from solely a statistical perspective.

3. Test-cost-sensitive reduction algorithms

To design test-cost-sensitive reduction algorithms, we need to review reduction algorithms for the minimal reduct prob-
lem first. There are generally two types of algorithms, namely, exhaustive algorithms and heuristic algorithms.

An exhaustive algorithm to the minimal reduct problem contains two main steps: Step 1, construct the set of all relative
reducts using the discernibility matrix [33]; and Step 2, count the size of each reduct and at the same time, select a minimal
reduct. Unfortunately, this algorithm is not scalable for the following reasons. First, Step 1 involve the DNF solution of CNF in
the Boolean algebra, which is NP-hard [33]. Second, the number of reducts of a decision system is exponential with respect to
the number of attributes. This is why heuristic algorithms have attracted much attention in this type of research.

Most heuristic algorithms to this problem have the same structure; their differences lie in the heuristic function, also
called the fitness function [47] employed. From the viewpoint of heuristic functions, Qian et al. classified these methods into
four categories [30]: positive region reduction, Shannon’s entropy reduction [38], Liang’s entropy reduction, and combina-
tion entropy reduction.
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In case that the test cost of any attribute is identical, a TCI-DS coincides with a decision system, and the minimal test cost
reduct problem coincides with the traditional relative reduct problem [25]. In other words, the latter problem can be viewed
as a special case of the former. Therefore, we also propose two types of algorithms to our problem.

We revise the exhaustive algorithm mentioned above to deal with our problem more easily; that is, choose a minimal test
cost reduct instead of a minimal reduct in Step 2. Computing the test cost of a reduct has the same complexity as counting
the number of attributes; therefore this algorithm is also NP-hard. In this paper, it is employed to evaluate the performance
of heuristic algorithms.

3.1. Information gain-based k-weighted reduction

Now we revise the traditional addition-deletion attribute reduction algorithm framework [47] to deal with our problem.
Algorithm 1 is a framework containing three main steps: Step 1, add core attributes to B; Step 2, add the current-best attri-
bute a to B according to the heuristic function f(B,a,c) until B becomes a super-reduct; and Step 3, delete redundant attri-
butes from B. The usefulness of Step 3 will be shown through Example 9 in Section 4.2.1. To avoid the deletion phase, the
addition method [47] can be revised in the same manner. However, since it requires the partial reduct check [47,50], which
requires more analysis, we do not consider it in this paper.

Algorithm 1: A general test-cost-sensitive reduction algorithm

Input: S = (U,C,D, {Vaja 2 C [ D}, {Iaja 2 C [ D},c)
Output: A reduct with sub-minimal test cost
Method: tcs-reduction
1: B = ;;

//Core computing
2: for (i=1 to jCj) do
3: if (POSC�faigðDÞ–POSCðDÞ) then
4: B B [ {ai};// ai is a core attribute
5: end if
6: end for

//Addition
7: CA = C � B;
8: while (POSB(D) – POSC(D)) do
9: For any a 2 CA, compute f(B,a,c);
10: Select a0 with the maximal f(B,a0,c);
11: B = B [ {a0}; CA = CA � {a0};
12: end while

//Deletion
13: CD = B; sort attributes in CD according to respective test cost in a descending order;
14: while (CD – ;) do
15: CD = CD � {a0}, where a0 is the first element of CD;
16: if ðPOSB�fa0gðDÞ ¼ POSBðDÞÞ then
17: B = B � {a0};
18: end if
19: end while
20: return B;

Lines 9 and 10 contain the key code of this framework. One can design different attribute significance functions f(B,a,c) to
obtain respective algorithms. Information gain [31] is often employed to represent the attribute significance [39,22]. To take
into consideration test costs, we propose a weighting approach [44,45] based on that gain.

The concepts of information entropy and information gain are well known. Recently fuzzy entropy are employed to im-
prove the generalization ability of rule sets [40]. We list basic concepts for completeness. In the following context, we let S =
(U,C, {d}, {Va}, {Ia},c) be a TCI-DS as defined in Definition 2; P, Q # C [ {d}; partitions of the universe U introduced by P and Q
be X = {X1,X2, . . . ,Xn} and Y = {Y1,Y2, . . . ,Ym}, respectively.

Any attribute subset P can be viewed as a random variable defined on the universe U, and the probability distribution can
be determined as follows.

Definition 5 [39]. The r-algebra distributions of P and Q on U are
½X : p� ¼
X1 X2 . . . Xn

pðX1Þ pðX2Þ . . . pðXnÞ

� �
ð18Þ
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and
½Y : p� ¼
Y1 Y2 . . . Yn

pðY1Þ pðY2Þ . . . pðYmÞ

� �
; ð19Þ
respectively, where pðXiÞ ¼ jXi j
jUj ; i ¼ 1;2; . . . ;n, and pðYjÞ ¼

jYj j
jUj ; j ¼ 1;2; . . . ;m.

The uncertainty in the values of attributes in P is measured by the information entropy.

Definition 6 [39]. The information entropy of P is
HðPÞ ¼ �
Xn

i¼1

pðXiÞ log pðXiÞ: ð20Þ
Since we are dealing with the classification task, there is a need to consider conditional information entropy.
Definition 7 [39]. The conditional information entropy of Q wrt. P is
HðQ jPÞ ¼ �
Xn

i¼1

pðXiÞ
Xm

j¼1

pðYjjXiÞ logðpðYjjXiÞÞ; ð21Þ
where p(YjjXi) = jYj \ Xij/jXij, i = 1, 2, . . . , n, j = 1, 2, . . . , m.
In fact, for the classification task, we often let Q = {d}. That is, the entropy is conditional on the decision attribute d. We

therefore arrive at the key concept.

Definition 8. Let B � C, ai 2 C and ai R B. The information gain of ai respect to B is
feðB; aiÞ ¼ HðfdgjBÞ � HðfdgjB [ faigÞ: ð22Þ

This concept was employed to design heuristic attribute reduction algorithms in [39].

Now we propose our k-weighted function as follows.
f ðB; ai; ciÞ ¼ feðB; aiÞck
i ; ð23Þ
where k is a non-positive number. If k = 0, this function reduces to the traditional information gain; otherwise, this function
has a tendency to low cost test. The setting of k is the focus of our experiments in Section 4.2.

Note that the k-weighted function requires test costs be non-zero. In applications, if a test has no cost at all, we still assign
it a small value. This modification makes sense as there should be a certain cost in collecting each data item.

The time complexity of computing f(B,ai,ci) is the same as that of fe(B,ai). Consequently, the time and space complexities
of the algorithm are the same that of the corresponding heuristic reduction algorithm. In our implementation, the time com-
plexity is O(jUj2jCj3) and the space complexity is O(jUkCj). With the approach of [30], the time complexity can be reduced to

O
PjCj

i¼1jUijðjCj � iþ 1Þ
� �

, where Ui ¼ U � POSfa1 ;a2 ;...;aigðDÞ. And the space complexity is not changed.

3.2. The competition approach

Different k settings can result in different reducts. This claim will be validated in Section 4 by experimentation. Therefore,
we can specify a set of k values, obtain corresponding reducts using Algorithm 1, and choose a reduct with minimal test cost.
In this approach, reducts compete against each other with only one winner, therefore it is called the competition approach.

Formally, let Rk be the reduct constructed by Algorithm 1 using the exponential k, with L the set of user-specified k values.
cL ¼min
k2L

cðRkÞ ð24Þ
is the minimal test cost that can be obtained using all k values in L.
This process requires the algorithm to be run jLj times, which is acceptable for relatively small jLj. Moreover, if we run this

process on jLj different computers in parallel, the time complexity is not changed. In many applications this approach is use-
ful. As will be shown in Section 4.2.3, this simple approach will enhance the quality of the result significantly.

4. Experiments

In this section, we try to answer the following questions by experimentation.

(1) Is our algorithm appropriate for the minimal test-cost reduct problem?
(2) Is there an optimal setting of k that is valid for any dataset?
(3) Does the test cost distribution influence the quality of the result?
(4) Can the competition approach improve the quality of the result?
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4.1. Datasets

We deliberately select four datasets from the UCI Repository of Machine Learning Databases [6]. Their basic information
are listed in Table 3, where jCj is the number of attributes, jUj is the number of instances, D is the name of the decision, and
jRed(S)j is the total number of reducts. Red(S) is obtained using the exhaustive algorithm discussed in [33] and Section 2.3.
One can also obtain it easily using RSES [4,5].

There are a number of observations that can be made in regard to all datasets.

(1) While counting the number of attributes, the decision attribute is not included.
(2) Missing values (e.g., those appearing in the Voting dataset) are treated as one particular value. That is,? is equal to

itself, and unequal to any other value.

The ‘‘animal name’’ attribute is not useful in the Zoo dataset, and we simply remove it. There are 15 boolean attributes
plus 1 enumerate attribute whose domain is {0,2,4,5,6,8}. There are 7 class values, which distinguish this dataset with from
2 class dataset.

The Iris dataset, found in the pattern recognition literature, is perhaps the best known. There are 4 numeric attributes.
However, we do not employ discretization approaches to process it because the number of possible values is still limited.

The house-voting-84 dataset (Voting for short) has the same size of attributes as that of Zoo, but has more instances.
However, it contains only 3 reducts.

The Tic-tac-toe dataset has the biggest size among the datasets tested. It also has a rational number of reducts.
Table 3
Dataset information.

Name Domain jCj U D = {d} jRed(S)j

Zoo Zoology 16 101 Type 33
Voting Society 16 435 Vote 3
Tic-tac-toe Game 9 958 Class 9
Mushroom Botany 22 8124 Classes 292

Table 4
Test cost settings of Zoo.

ID Distribution a b c d e f g h i j k l m n o p

1 Uniform 9 42 97 77 10 63 70 84 42 97 62 65 69 55 86 53
2 35 28 58 18 50 18 53 56 31 9 10 46 28 6 43 1
3 98 72 73 4 4 63 28 58 25 48 68 53 26 82 37 26
4 46 52 59 91 54 52 48 74 17 62 43 77 74 55 49 28
5 59 19 85 11 75 12 63 30 93 16 98 58 20 93 99 52
6 13 34 33 35 77 51 85 10 27 6 19 4 40 53 86 16
7 52 87 21 28 6 2 51 38 91 71 90 99 45 42 24 57
8 42 60 22 33 87 96 65 48 32 22 86 38 3 58 17 96
9 96 75 71 25 21 35 87 29 98 44 40 84 22 17 5 28

10 83 9 12 5 99 7 72 5 23 91 85 70 44 80 55 35

11 Normal 44 64 53 57 47 50 55 45 44 59 53 44 33 43 58 51
12 54 68 53 38 49 51 65 56 67 54 45 56 49 49 51 45
13 48 57 62 55 51 41 63 70 70 30 39 48 44 35 54 40
14 46 48 54 42 66 47 44 57 62 39 59 45 40 51 51 53
15 58 53 55 58 53 50 44 50 53 52 54 47 41 55 51 47
16 62 50 53 63 54 53 70 51 50 57 51 54 54 63 36 60
17 49 52 36 44 52 49 39 62 47 51 69 47 39 42 47 53
18 62 61 45 47 54 57 52 59 41 47 57 65 37 37 35 51
19 53 55 44 61 50 54 57 42 40 40 56 43 57 46 55 46
20 65 45 46 39 38 53 46 54 54 51 40 39 54 59 47 54

21 Pareto 1 2 84 4 42 1 1 1 1 1 30 2 1 1 19 3
22 13 1 1 1 1 3 1 10 54 19 4 1 1 1 3 2
23 33 14 2 6 1 11 8 1 1 2 3 1 3 1 1 62
24 10 11 3 1 5 62 4 1 1 11 1 1 2 1 13 1
25 2 5 1 3 1 6 1 3 1 1 4 2 1 37 1 1
26 1 1 2 1 37 12 1 2 19 2 12 8 2 1 1 13
27 3 21 1 1 1 1 3 2 30 7 27 84 2 2 1 4
28 5 4 2 6 2 1 33 62 1 1 1 11 23 3 8 1
29 4 1 18 1 9 1 5 1 37 1 71 4 1 37 84 3
30 21 3 8 5 6 1 1 2 2 47 1 1 12 2 1 6
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4.2. Results

Optimal reducts are needed to evaluate the performance of the algorithm. These are obtained using the exhaustive ap-
proach implemented in RSES [4,5]. This approach takes much time for the Mushroom dataset. Fortunately, we need to obtain
the reduct set one time only for each dataset; then, for each cost vector, the cost of each reduct is calculated and the optimal
reduct is found.

We present both individual and statistical results. Individual results show more detail of the test cost setting, the reduct
constructed by the algorithm, and the quality of the reduct. Two examples show the process of reduction. Statistical results
are based on a large number of experiments on different datasets and/or test cost settings. These show the effectiveness of
our algorithm, and indicate the appropriate setting of the exponent factor k. We also compare three approaches mentioned in
Section 3.

4.2.1. Individual results of Zoo
Since the Zoo has a rational number of attributes and instances, we focus on it for certain detailed analysis. 30 test cost

settings are listed in Table 4; 10 for each distribution discussed in Section 2.2. Letters a through p are employed to represent
attributes hair, feathers, eggs, milk, airborne, aquatic, predator, toothed, backbone, breathes, venomous, fins, legs, tail,
domestic, and catsize, respectively. This is partly because test cost settings for these attributes are rather artificial, and letters
are more abstract and therefore more appropriate than real names.

The settings of each distribution is as follows: M = 1 and N = 100 for each distribution; for the normal distribution, a = 8,
and test costs as high as 70 and as low as 30 are often generated; for the bounded Pareto distribution, a = 2, and test costs
higher than 50 are often generated. These settings are valid through the rest of the paper.
Table 5
Results of Zoo.

ID Optimal reduct Minimal test cost Constructed reduct Test cost Is optimal Exceeding factor

1 {d, f, i, l,m} 316 {c, f, i,m,p} 324 No 0.025
2 {d, f, j,k,m,n,p} 90 {d, f, j,k,m,n,p} 90 Yes 0
3 {d, f, i, l,m} 171 {d, f, i, l,m} 171 Yes 0
4 {c, f, i,m,p} 230 {c, f, i,m,p} 230 Yes 0
5 {d, f,h, l,m} 131 {d, f,h, l,m} 131 Yes 0
6 {a, f,h, j, l,m} 124 {a, f,h, j, l,m} 124 Yes 0
7 {c,d, f,h,m} 134 {c,d, f,h,m} 134 Yes 0
8 {c,d, f, i,m} 186 {c,d, f, i,m} 186 Yes 0
9 {d, f,h,k,m,p} 179 {d, f,h,k,m,p} 179 Yes 0

10 {c,d, f,h,m} 73 {c,d, f,h,m} 73 Yes 0
11 {d, f, i, l,m} 228 {a,c, f, i, l,m} 268 No 0.175
12 {c,d, f,h,m} 247 {c,d, f,h,m} 247 Yes 0
13 {a, f, j, l,m,n} 246 {a, f, j, l,m,n} 246 Yes 0
14 {d, f,h, l,m} 231 {d, f,h, l,m} 231 Yes 0
15 {c, f,h,m,p} 243 {c, f,h,m,p} 243 Yes 0
16 {c, f,h, j,m} 268 {c, f,h, j,m} 268 Yes 0
17 {c,d, f, i,m} 215 {c,d, f, i,m} 215 Yes 0
18 {c,d, f, i,m} 227 {c,d, f, j,m,n} 270 No 0.189
19 {c, f,h, j,m} 237 {c, f,h, j,m} 237 Yes 0
20 {d, f,h, l,m} 239 {d, f,h, l,m} 237 Yes 0
21 {a, f, I, j, l,m} 7 {a, f, I, j, l,m} 7 Yes 0
22 {d, f,h, l,m} 16 {d, f,h, l,m} 16 Yes 0
23 {c, f,h, l,m,n} 19 {c, f,h, l,m,n} 19 Yes 0
24 {d, f,h, l,m} 67 {d, f,h, l,m} 67 Yes 0
25 {c, f, i,m,p} 10 {c, f, i,m,p} 10 Yes 0
26 {c,d, f,h,m} 19 {c,d, f, j,m,n} 20 No 0.053
27 {c,d, f,h,m} 7 {c,d, f,h,m} 7 Yes 0
28 {c, f, i,m,p} 28 {c, f, i,m,p} 28 Yes 0
29 {d, f,h, l,m} 8 {d, f,h, l,m} 8 Yes 0
30 {d, f,h, l,m} 21 {d, f,h, l,m} 21 Yes 0

Table 6
Statistics of Table 5.

Distribution Finding optimal factor Maximal exceeding factor Average exceeding factor

Uniform 0.9 0.025 0.0025
Normal 0.8 0.189 0.0364
Pareto 0.9 0.053 0.0053

Overall 0.867 0.189 0.0147
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Let k = �1 in Eq. (23). Detailed results are listed in Table 5. These are also digested in Table 6. The finding optimal factor is
86.7%, which is not very high. However, the maximal exceeding factor is 0.189, which is acceptable, while the average
exceeding factor is 0.0147, which is very good.

The following example indicates that the second for loop of the algorithm is necessary.

Example 9. For the test cost setting with ID 5, c=[59,19,85,11,75,12,63,30,93,16,98,58,20,93,99,52]. With Algorithm 1,
the attribute set {d, f,h, j, l,m} is obtained after the while loop. It is, however, not a reduct. Then in the for loop, attribute j is
removed and a reduct {d, f,h, l,m} is constructed. Table 5 shows that this reduct is optimal.

If we run the algorithm many times with different cost vectors, we obtain some reducts with rather high exceeding fac-
tors. The following example gives an intuitive understanding.

Example 10. Let c=[2,1,4,1,2,2,42,18,25,1,2,1,1,7,2,6], the optimal reduct is {d, f, j, l,m,n}, and the optimal test cost is
1 + 2+1 + 1+1 + 7 = 13. The reduct process is as follows: f, m (core attributes) ? d ? l ? h, and the reduct found is {d, f, h, l,
m}. The test cost for the reduct is 1 + 2+18 + 1 + 1 = 23, making an exceeding factor (23 � 13)/13 � 0.77.

In the reduct construction process, the algorithm chose attribute h (with cost 18) instead of j (with cost 1) or n (with cost
7). In fact, the weighted information gain of attribute h is 0.0151, only slightly larger than that of j (0.0133) or n (0.0132).
Also, the optimal reduct has one more attribute than the constructed reduct. This phenomenon indicates that the optimal
reduct may be hard to construct for certain test cost settings.

Unfortunately, in the framework of our algorithm, we have not found a setting to guarantee optimality of the reduct con-
structed. Such a setting seems not to exist. This will be discussed further in the next subsection.

4.2.2. Statistical results of all datasets
To find an appropriate setting for k, we let k = 0, �0.25, �0.5, . . .. When k = 0, according to Eq. (23),
f ðB; ai; ciÞ ¼ feðB; aiÞck
i ¼ feðB; aiÞ: ð25Þ
In other words, the algorithm degrades to an entropy-based reduction algorithm without taking into account test costs.
For each weight-setting scheme applied to a particular test cost setting scheme and dataset, we undertake 4000 exper-

imental runs. There are 4 datasets; for each dataset, there are 3 distributions as discussed in Section 2.2 to generate test
costs; for each distribution, we generate 2,000 sets of test costs; finally, for each test cost setting, there are 9 k settings.
Therefore, a total of 4 � 3 � 2,000 � 9 = 216,000 experimental results are generated, that are aggregated according to
distribution and our factor analysis into Figs. 1–3.

Fig. 1 shows the results of finding optimal factors. For different test cost distributions, the performance of the algorithm is
different. With the Pareto distribution, the algorithm has the best performance; the normal distribution produces the worst.
A possible reason is that the Pareto distribution generates many small values and a few large values, and there are many
attributes with both low test costs and large information gain. In contrast, the normal distribution generates many values
close to the mean value, and attributes with both low test costs and large information gain often do not exist. Moreover,
there is usually a trade-off between the test cost and the information gain of the attribute. Finally, with the uniform
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distribution, there are more cheap tests than that of the normal distribution, and less cheap tests than that of the Pareto
distribution.

When k = 0, the performance of the algorithm is very poor on Zoo, Iris and Tic-tac-toe. This is because test costs are not
taken into account, and the reduct obtained is often a minimal reduct instead of a minimal test cost reduct. Furthermore,
results here also indicate that traditional attribute reduction algorithms are inappropriate for the minimal test cost reduct
problem. The reason why it always yields the optimal reduct on the Voting dataset for the normal distribution is that there
are only 3 possible reducts, and a minimal reduct is also a minimal test cost reduct.

The optimal setting for k varies between datasets but seldom between distributions; specifically, �0.5, �4, �0.75 � �1
and �6.5 for datasets Zoo, Iris, Voting and Tic-tac-toe, respectively. There is a tendency that with decreasing k, the perfor-
mance of the algorithm increases until a maximal is reached, after which it decreases. This phenomenon is obvious for Zoo,
Voting, and Tic-tac-toe. In particular, FOF decreases suddenly for the uniform distribution after k reaches �6.5.

With the best setting of k, however, the performance of the algorithm still seems unsatisfactory. The finding optimal fac-
tor is only 0.67 for the normal distribution and 0.88 for the Pareto distribution. Although there is a need to design new algo-
rithms to obtain better performance, we still argue that our algorithm is not so weak. Fig. 2 provides some evidence.

Note that k = 0 is not illustrated. The associated data are listed in Table 7. This is because the performance of the algorithm
is very poor, and their inclusion would make other data hard to distinguish. For example, in Fig. 2(a), the maximal exceeding
factor is always less than 0.7. It is 9.67 when k = 0.



Table 7
Results for k = 0, k with the optimal setting, and k with a number of choices.

Dataset Distribution Finding optimal factor Maximal exceeding factor Average exceeding factor

k = 0 k = k⁄ k 2 L k = 0 k = k⁄ k 2 L k = 0 k = k⁄ k 2 L

Zoo Uniform 0.077 0.760 0.903 2.593 0.391 0.391 0.30406 0.01649 0.00462
Normal 0.095 0.701 0.856 0.275 0.127 0.107 0.05553 0.01076 0.00311
Pareto 0.479 0.992 0.999 9.667 0.167 0.167 0.25798 0.00114 0.00008

Voting Uniform 0.837 0.924 0.997 0.269 0.191 0.053 0.00940 0.00303 0.00006
Normal 1.000 1.000 1.000 0.000 0.000 0.000 0.00000 0.00000 0.00000
Pareto 0.896 0.953 0.999 5.353 0.313 0.071 0.02466 0.00671 0.00007

Tic-tac-toe Uniform 0.121 0.972 0.976 0.601 0.121 0.025 0.12058 0.00019 0.00017
Normal 0.119 0.856 0.864 0.128 0.066 0.036 0.03076 0.00113 0.00109
Pareto 0.209 1.000 1.000 8.875 0.000 0.000 0.29494 0.00000 0.00000

Mushroom Uniform 0.029 0.484 0.699 8.742 0.952 0.672 0.74323 0.08066 0.02974
Normal 0.082 0.219 0.341 0.572 0.544 0.402 0.10014 0.14176 0.07522
Pareto 0.365 0.712 0.750 19.752 0.500 0.500 0.47205 0.06983 0.06118
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Fig. 2 shows the results of maximal exceeding factors. There the optimal settings of k change. For example, for the Zoo
dataset with the Pareto distribution, the MEF is minimal when k = �1 instead of �0.5. If we set k = �0.5, however, the max-
imal exceeding factor is only slightly greater than its minimal. It is about 0.47, that is, 47% more than that of the optimal
reduct. Recall that this value is maximal for all 4000 test cost sets and remains acceptable.

For the Tic-tac-toe dataset with the uniform distribution, there is no obvious trend in the maximal distribution factor.
This is due to some degree of randomness as this factor is based on one particular reduct.

Fig. 3 shows the average exceeding factor. Here the optimal setting for k is very close, if not equal, to that for the finding
optimal factor. This phenomenon indicates that from a statistical point of view, we only need to obtain the optimal setting
for the finding optimal factor. The average exceeding factor is very low for the optimal setting. For example, it is about 0.015
for the Zoo dataset with the Pareto distribution. That is, constructed reducts have only 1% to 2% more test costs than that of
the optimal reduct on average. This performance is satisfactory in applications.

In practice, however, there is seldom any additional information to indicate the optimal setting of k. From Figs. 1–3, we
know that k = �1 is an acceptable setting for all datasets and test cost distributions tested.

4.2.3. Comparison of three approaches
Now we compare the performance of the three approaches mentioned in Section 3. All three are based on Algorithm 1.

The first approach, called the non-weighting approach, is implemented by setting k = 0. The second approach, called the best
k approach, is to choose the best k value as depicted in Figs. 1–3. The third approach is the competition approach as discussed
in Section 3.2. L contains k values indicated in Figs. 1–3.

Table 7 lists results for all three approaches. We observe the following:

(1) The non-weighting approach only performs well on the Voting dataset, which has only 3 reducts. In all three other
datasets, the results are unacceptable. Therefore the non-weighting approach is not suitable for the minimal test-cost
reduct problem.

(2) The best k approach obtains good results in most cases. If it fails to find the optimal reduct, the constructed reduct is
still acceptable. Unfortunately, in applications we have no idea how to obtain the best k. Therefore k = �1 might be a
rational setting, as depicted in Figs. 1–3.

(3) The competition approach significantly improves the quality of results, especially on datasets with many reducts. As
an example, we consider the Zoo datasets with the Uniform distribution test cost. Compared with the best k approach,
the finding optimal factor increases 14.3%; and the average exceeding factor decreases to about 1/4. It is much easier
to specify L than to guess the best k. We can specify as many values as we want, as long as the running time is
acceptable.

4.2.4. Discussions
Now we can answer the questions proposed at the beginning of this section.

(1) Algorithm 1 is better than the minimal reduct algorithm. Table 7 shows that the minimal reduct algorithm only
obtains good results on the Voting dataset. However, this is partly due to the fact that the Voting dataset has only three
reducts. With a good setting of k, the quality of the result can be significantly improved. Therefore we find that Algo-
rithm 1 is appropriate for the minimal test cost reduct problem.

(2) There is no optimal setting of k that is valid for any dataset. There is, however, always a tradeoff for k, but k = �1 seems
to be an acceptable setting for all datasets we tested.
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(3) The test cost distribution influences the quality of the result. Specifically, when the test cost distribution is bounded
Pareto, the algorithm has a greater probability of finding the optimal reduct.

(4) The competition approach can improve the quality of results. The improvement is significant, especially on datasets
with many reducts. With this approach, k values are easy to set. We set it to be �4.75 to 0 with step length 0.25
and obtain good results. In this way, L = 20 and Algorithm 1 always run 20 times. This is a good setting for all datasets
we tested, and bigger L does not help improving the quality of results further.

A closely related problem was addressed by Susmaga [34] in 1999. Our work has a number of differences from his. First,
we indicated the condition on which the problem is meaningful. Second, the problem in [34] is essentially restricted to TCI-
DS, and our is for more general SICT-DS. Third, we designed a heuristic algorithm, instead of an exhaustive algorithm, to deal
with the problem.

5. Conclusions and further works

This study has posited a new research theme in regard to attribute reduction. We formally defined the minimal test cost
reduct problem, which is more general than the traditional reduct problem. The new problem has practical areas of appli-
cation. In fact, when tests must be undertaken in parallel, test-cost-sensitive attribute reduction is mandatory in dealing
independently with cost issues. Algorithm 1 is a framework and one can design different attribute significance functions
to obtain a substantive algorithm. We also proposed an information gain based k-weighted function. Experimental results
indicate that the competition approach is a good choice even if the optimal setting of k is known.

The following research topics deserve further investigation:

(1) Algorithm 1 can be enhanced to provide better performance. To improve the quality of results, one could design
approaches other than the simple weighting indicated by Eq. (23). To improve the speed of the algorithm such that
it can be employed in very large databases, one could use the accelerator proposed by Qian et al. [30], or efficient
genetic algorithms [18,35,53].

(2) The minimal test cost reduct should be considered again in more complicated models such as the simple common-
test-cost decision systems and the complex common-test-cost decision systems [25]. In these models, the algorithm
may also be more complicated.

(3) Since this paper only considers test costing, one may also consider the misclassification cost under the framework of
decision-theoretic rough set model [46].

We note that the major contribution of the paper is in the definition of the problem rather than the algorithm. As we
known, usually the problem formulation is more important than the problem solving. We hope that this study opens a
new door for rough sets research.
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