
Information Sciences 211 (2012) 48–67
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Attribute reduction of data with error ranges and test costs

Fan Min ⇑, William Zhu
Lab of Granular Computing, Zhangzhou Normal University, Zhangzhou 363000, China

a r t i c l e i n f o
Article history:
Received 25 August 2011
Received in revised form 29 February 2012
Accepted 18 April 2012
Available online 5 May 2012

Keywords:
Cost-sensitive learning
Test cost
Error range
Neighborhood
Covering rough set
0020-0255/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.ins.2012.04.031

⇑ Corresponding author. Tel.: +86 133 7690 8359
E-mail addresses: minfanphd@163.com (F. Min),
a b s t r a c t

In data mining applications, we have a number of measurement methods to obtain a data
item with different test costs and different error ranges. Test costs refer to time, money, or
other resources spent in obtaining data items related to some object; observational errors
correspond to differences in measured and true value of a data item. In supervised learning,
we need to decide which data items to obtain and which measurement methods to employ,
so as to minimize the total test cost and help in constructing classifiers. This paper studies
this problem in four steps. First, data models are built to address error ranges and test
costs. Second, error-range-based covering rough set is constructed to define lower and
upper approximations, positive regions, and relative reducts. A closely related theory deals
with neighborhood rough set, which has been successfully applied to heterogeneous attri-
bute reduction. The major difference between the two theories is the definition of neigh-
borhood. Third, the minimal test cost attribute reduction problem is redefined in the
new theory. Fourth, both backtrack and heuristic algorithms are proposed to deal with
the new problem. The algorithms are tested on ten UCI (University of California – Irvine)
datasets. Experimental results show that the backtrack algorithm is efficient on rational-
sized datasets, the weighting mechanism for the heuristic information is effective, and
the competition approach can improve the quality of the result significantly. This study
suggests new research trends concerning attribute reduction and covering rough set.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Cost-sensitive learning is among the most challenging problems in data mining [62]. It has attracted much research inter-
est from different data-mining societies working on topics such as decision trees (see, e.g., [13,30,55]), artificial neural net-
works (see, e.g., [24,68]), rough set (see, e.g., [37,38,65,66]), and Bayes networks (see, e.g., [6]). Most work addresses
misclassification costs [6,24,32,65,66,68], but few address test costs [37,38,55], and even fewer address both [30,55].

Test cost is the time, money, or other resources one pays for obtaining a data item of an object. The topic has drawn our
attention recently due to its broad applications. Based on data models discussed in [38], a number of situations have been
identified, and respective problems have been defined. Specifically, test-cost-sensitive reduct problems were defined in
[16,17,37]. These problems aim at finding a test set minimizing the test cost, while preserving the discernibility of the ori-
ginal decision system. The test cost constraint issue was introduced in [39,41] to address the situation where the total test
cost one can afford is limited. The optimal sub-reduct problem was defined for this situation. Moreover, the problem was
reconsidered in the dynamic environment, where both test costs and the constraint can change over time [40]. In these
works, backtrack and heuristic algorithms were implemented and compared through an open source software Coser [42].
. All rights reserved.

.
williamfengzhu@gmail.com (W. Zhu).

http://dx.doi.org/10.1016/j.ins.2012.04.031
mailto:minfanphd@163.com
mailto:williamfengzhu@gmail.com
http://dx.doi.org/10.1016/j.ins.2012.04.031
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 49
Observational error is the difference between a measured value of the data item and its true value. In applications, we do
not know exactly the observation error; however, the error range is usually known. For example, we often use 37.7 ± 0.1 �C to
indicate the body temperature of a person, where 37.7 �C is the observed value, and ±0.1 �C is the error range. Other forms of
observational error exist for more complicated data. For example, we use 256 � 256 images to store the CT (computed
tomography) information. We could use � 1

256 to represent the error range; however, the physical meaning is quite different
from the body temperature. Data with observational error is a form of uncertain data that has become a hot topic in data
mining (see, e.g., [1,7]).

A number of measurement methods could exist to obtain a data item. For example, one can use a mercury thermometer,
an electronic thermometer, or an infrared thermometer to test the body temperature. These methods require different test
costs; specifically, the respective time requirements are 5 min, 1 min, and 2 s. As a result, the error ranges are also different.
The infrared thermometer has the widest error range. Throughout this paper, we assume that the test cost of each data item,
and the error range of each measurement method are known. We use the term ‘‘test’’ to indicate the process of obtaining a
data item using one particular measurement method. It also refers to an attribute in an information system, or a conditional
attribute in a decision system. Different measurement methods for the same data are viewed as different tests, and corre-
spond to different attributes.

For classification purposes, we do not have to undertake all tests, nor do we have to choose the most sophisticated mea-
surement method for each data item. Instead, we would like to find out the most economical test set which is sufficient to
make the decision. This motivates us to define a new problem for this kind of test sets. In fact, the motivation of the new
problem is similar to the work in [37]. However, the data under consideration are nominal ones from [37]. In contrast, this
work deals with numerical data; hence, the new problem has different application areas.

We build a new model, called an error-range-based covering rough set, to address the observational error issue and for-
malize our problem. Note that the term ‘‘covering’’ instead of ‘‘neighborhood’’ is employed because a neighborhood system
always generates a covering of the universe. The concept of reducts is employed to describe information preservation. Con-
sequently, the new problem is referred to as the test-cost-sensitive attribute reduction through error-range-based covering
rough set, or TARER for brevity. In fact, there exist some neighborhood systems [11,26,29], covering rough set frameworks
[5,69,70,72], neighborhood rough set frameworks [18–20,25,60], near set [47], vague set [48], and generalized rough set over
fuzzy lattices [10,12,21,33], that have gained much success in both theory and application. Specifically, attribute reduction in
neighborhood rough set [14,18–20] can help to increase the prediction accuracy of the classifier. Although showing similar-
ities, the existing work in [18–20] are essentially different from ours in three ways. First, the models constructed require a
user-chosen distance function and a user-specified distance threshold d. In contrast, our model is based on error ranges that
are intrinsic to data. Second, the objective of reduct algorithms for these models is to improve the classification accuracy. In
contrast, our objective is to minimize the total test cost. Third, d is used in these models to adjust the neighborhood size. In
contrast, in our model different tests for the same data item produce not only different error ranges, but also different ob-
served values on one data item. For example, with one thermometer we obtained the value 37.7 ± 0.1 �C, whereas with an-
other we obtain 37.71 ± 0.03 �C.

The main contributions of the work are fourfold. First, we build the data model to formalize the situation mentioned
above. Only numerical data are considered to simplify the discussion. Second, we build the computational model, namely
the error-range-based covering rough set, and define key concepts such as lower and upper approximations, positive regions,
and relative reducts. Third, we redefine the attribute reduction problem under the new model. Similar to the problem de-
fined in [37], the objective is to minimize the total test cost. Fourth, we propose a backtrack algorithm to find an optimal
reduct, a heuristic algorithm to find a sub-optimal reduct, and a competition approach to improve the performance of the
heuristic algorithm. Experiments on ten datasets from the UCI library undertaken with open source software Coser [42] val-
idate the effectiveness of these algorithms.

The rest of the paper is organized as follows: Section 2 presents the data models. Error ranges and test costs are consid-
ered one after another. Section 3 presents the computational model, namely error-range-based covering rough set model.
The test-cost-sensitive attribute reduction problem under the new model is also defined in this section. Next, Section 4 pre-
sents two algorithms and the competition approach. Experiments settings and results are discussed in Section 5. Finally, Sec-
tion 6 presents concluding remarks and points out further research trends.
2. Data models

This section studies data models. We start from basic information systems and decision systems. Next, we introduce
observational errors to tests, and propose information and decision systems with error ranges. Finally we introduce test costs
and define test-cost-sensitive decision systems with error ranges.
2.1. Information systems and decision systems

Information systems and decision systems are fundamental in machine learning and data mining. These are often stored
in relational databases. For completeness, these are defined below.

50 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
Definition 1 [64]. An information system (IS) S is the 4-tuple:
S ¼ ðU;A;V ¼ fVaja 2 Ag; I ¼ fIaja 2 AgÞ; ð1Þ
where U is a finite set of objects called the universe, A is the set of attributes (tests), Va is the set of values for each a 2 A, and
Ia:U ? Va is an information function for each a 2 A.

In many applications, we have a number of decision attributes. Therefore we can construct decision trees or generate
decision rule to classify unseen objects.

Definition 2 [64]. A decision system (DS) S is the 5-tuple:
S ¼ ðU;C;D;V ¼ fVaja 2 C [Dg; I ¼ fIaja 2 C [DgÞ; ð2Þ
where U is a finite set of objects called the universe, C is the set of conditional attributes, D is the set of decision attributes
with only discrete values, Va is the set of values for each a 2 C [D, Ia:U ? Va is an information function for each a 2 C [D.

For brevity, V and I are sometimes dropped and these systems denoted by S = (U,A) and S = (U,C,D) [45].
In most applications, D = {d}; that is, we are given only one decision attribute. If jDj > 1, we can construct jDj decision sys-

tems, each with exactly one decision attribute. An example decision system is listed in Table 1, where D = {class}. It is a sub-
table of the Iris dataset. Conditional attributes are normalized to help processing and comparison. One possible
normalization approach is to employ the linear function y = (x �min)/(max–min), where x is the initial value, y is the normal-
ized value, min and max are the minimal and maximal value of the attribute domain, respectively. Note that normalization is
neither essential to our model nor critical to our algorithm. Table 1 can be also viewed as an information system where
A = {sepal-length, sepal-width, petal-length, petal-width, class}.

2.2. Information systems and decision systems with error ranges

Attribute values of information systems and conditional attribute values of decision systems are often obtained through
certain tests. Therefore, throughout this paper, attributes of information systems and conditional attributes of decision sys-
tems will also be called tests. Observational errors are intrinsic to tests especially when values are numerical. We include this
issue in our model to make it applicable to more real data.

Definition 3. An information system with error ranges (IS-ER) is the 5-tuple:
S ¼ ðU;A;V ; I; eÞ; ð3Þ
where U, A, V, and I have the same meaning as Definition 1, e : A! Rþ [f0g is the maximal observational error of a 2 A, and
±e(a) is the error range of a.

Error free tests are tests with e(a) � 0. In most cases, these are tests producing nominal outputs, which are transferred to
numerical ones. If all tests are error free, an IS-ER degrades to an IS. Therefore IS-ER is a generalization of IS. Note that values
of decision attributes are often specified by experts. Hence decision attributes are also prone to error. This issue involves the
cost of teacher [56] and will not be discussed further in this paper.

An example observation error vector is listed in Table 2. We deliberately assign large values to the maximal observation
errors to help explain some concepts through examples, where the number of objects is small. In applications these values
should be small enough to make the data useful.

Similarly, we extend the concept of decision systems to consider observational errors.

Definition 4. A decision system with error ranges (DS-ER) S is the 6-tuple:
S ¼ ðU;C;D;V ; I; eÞ; ð4Þ
Table 1
An example decision system.

Plant Sepal-length Sepal-width Petal-length Petal-width Class

x1 0.24 0.64 0.10 0.05 Setosa
x2 0.18 0.41 0.10 0.05 Setosa
x3 0.12 0.50 0.07 0.05 Setosa
x4 0.76 0.45 0.60 0.52 Versicolor
x5 0.35 0.09 0.38 0.43 Versicolor
x6 0.65 0.32 0.52 0.52 Versicolor
x7 0.59 0.55 0.86 1.00 Virginica
x8 0.44 0.27 0.64 0.71 Virginica
x9 0.82 0.41 0.83 0.81 Virginica

Table 2
An example observational error vector.

a Sepal length Sepal width Petal length Petal width

e(a) 0.08 0.09 0.05 0.07

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 51
where U,C,D,V and I have the same meaning as Definition 2, e : C ! Rþ [f0g is the maximal observational error of a 2 C, and
±e(a) is the error range of a.

Note that the concept of observational error is not applicable to decision attributes which are discrete. Tables 1 and 2
represent a DS-ER. Obviously, DS-ER is a generalization of DS.

In some applications, error ranges can be asymmetric. For example, let the true value be v, the observed value be v0, we
may require v0 2 [v,v + e]. In other words, the value should never be underestimated. Because it is straightforward to adjust
the model to suit such kind of conditions, we only consider the one mentioned in Definition 4.

Another observation is that error ranges at the boundaries are different. For example, let the upper bound of a thermom-
eter be 100 �C and the error range be ±0.1 �C. When the true value is 100 �C, the observed value is in the range
[99.9 �C,100 �C] instead of [99.9 �C,100.1 �C]. Fortunately, the boundaries influence the data generation, but not the data
model, nor the algorithms processing the data. Therefore this issue will not be addressed further.

2.3. Test-cost-independent decision system with error ranges

Test costs are also intrinsic to data. We introduce that next into the data model. For brevity, we only discuss models based
on decision systems. One can follow the discussion for information systems.

Definition 5. A test-cost-independent decision system with error ranges (TCI-DS-ER) S is the 7-tuple:
S ¼ ðU;C;D;V ; I; e; cÞ; ð5Þ
where U,C,D,V, I, and e have the same meanings as in a DS-ER, c : C ! Rþ is the test cost function. Test costs are independent
of one another, that is, cðBÞ ¼

P
a2BcðaÞ for any B # C.

Again we only consider the simplest case where test costs are independent. More complicated situations can be found in
[38], and one can build more sophisticated models on these. An example TCI-DS-ER is given by Tables 1–3. Naturally, DS-ER
can be viewed as a special case of TCI-DS-ER where c(a) = c for all a 2 C where c is a constant.

Note that in this model, tests costs are not applicable to decision attributes. In some applications one could consider the
cost of teachers [56], and a decision attribute will be involved. However, both the motivation and the model are different.

3. Error-range-based covering rough set

In information systems, neighborhood [19,23,26,63] is an important concept when identifying a set of objects centered on
a given one. From the viewpoint of granular computing [2,27,28], a neighborhood is also called an information granule. From
the viewpoint of covering rough set [70,72], a neighborhood is also called a covering element, or a block.

In most existing work, two issues are employed to identify the neighborhood. The first is the distance function, which
computes how far away two objects are. Well-known distance functions include the Manhattan distance, the Euclidean dis-
tance, and the Chebychev distance; these correspond to 1-norm, 2-norm, and1-norm, respectively. Fig. 1 [19,20] illustrates
the neighborhoods of x in a two-dimension real space. A neighborhood around x based on the Manhattan distance is a square
with diagonals parallel to the coordinate axes; one based on the Euclidean distance is a circle, whereas one based on the
Chebychev distance is a square with edges parallel to the coordinate axes.

The second is a user-specified parameter. For the k-nearest neighbor algorithm (k-NN) [9], k is the parameter and the top
k nearest objects will be viewed as neighbors. For the neighborhood rough set model [19,20], d is a distance parameter and
objects with a distance no further than d are viewed as neighbors. All these approaches require the user to make certain
choices.

In this section, we study error-range-based covering rough set. As mentioned earlier, error ranges are intrinsic to data
rather than specified by users. The new model requires neither the distance function nor the distance upper bound d, hence
the user is less involved in the model building process. Note that properties shared by neighborhood systems still hold for
the new model. For example, the neighborhood relation induced by the new model can also be considered as a kind of
Table 3
An example test cost vector.

a Sepal length Sepal width Petal length Petal width

c(a) $5 $5 $4 $4

Fig. 1. Conventional neighborhoods.

52 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
tolerance relations. Therefore both covering rough set [70,72] and tolerance-relation-based rough set [3,22,35,53] can be
established on the new model.

3.1. Error-range-based covering

With Definition 3, a new type of neighborhood can be defined as follows.

Definition 6. Let S = (U,A,V, I,e) be an IS-ER. Given xi 2 U and B # C, the neighborhood of xi with respect to error ranges on
test set B is defined as
eBðxiÞ ¼ fxj 2 Uj8a 2 B; jaðxiÞ � aðxjÞj 6 2eðaÞg: ð6Þ

Naturally, e;(xi) = U for any xi 2 U. We explain why 2e(a) instead of e(a) was employed in Eq. (6) as the maximal distance.

Let the true value of x 2 U be a0(x) for a 2 B. Due to the observational error, a0(x) � e(a) 6 a(xi) 6 a0(x) + e(a). In extreme cases,
a0(x) � e(a) and a0(x) + e(a) can be the observed value of the same object. We have (a0(x) + e(a)) � (a0(x) � e(a)) = 2e(a); there-
fore, observed values with no more than a difference of 2e(a) should be viewed the same.

An observed value a(x) should have its real value a0(x) in the range [a(x) � e(a),a(x) + e(a)]. Suppose that xj falls in the
neighborhood of xi, from Definition 6, we obtain
ja0ðxiÞ � a0ðxjÞj 6 4eðaÞ: ð7Þ
In other words, more objects than we expect are included in the error range. The following example gives an intuitive
understanding.

Example 7. Suppose there are two plants with normalized sepal lengths 0.68 and 0.72, and the error range is ±0.01. In the
worst case, observed values could be 0.69 and 0.71, respectively. Since a true sepal length of 0.70 can be read as either 0.69 or
0.71, the sepal lengths of these two plants have to be viewed the same. Here 0.72 � 0.68 = 0.04 = 4 � 0.01. Fig. 2 gives an
illustration, where neighborhoods of x2 have observed sepal lengths in [0.69,0.73]. This example indicates that the
observational error is amplified.

From Definition 6 we also know that
eBðxiÞ ¼
\
a2B

efagðxiÞ: ð8Þ
That is, the neighborhood eB(xi) is the intersection of a number of basic neighborhoods.
Sometimes we have a number of tests to obtain the same data item. Suppose some error ranges are known and others are

unknown. The following proposition provides an estimation.

Proposition 8. Let ai and aj be the tests for the same data item, jaj(x) � ai(x)j 6 e0 for any x 2 U. We have
eðajÞ 6 eðaiÞ þ e0: ð9Þ
Proof. Let a0(x) be the true value of x on the test. aj(x) 6 ai(x) + e0 6 a0(x) + (e(ai) + e0); aj(x) P ai(x) � e0 P a0(x) � (e(ai) + e0).
Therefore e(aj) 6 e(ai) + e0. h
Fig. 2. Observational error amplification.

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 53
Unfortunately, even if we know that aj is more precise than ai, we cannot construct an error range narrower than e(ai).
Therefore the error range is essentially amplified. In fact, this proposition is more often used to generate data. Most datasets
from the UCI library provide only one test for each data item. For the purpose of experimentation, we are able to construct
some new tests. Proposition 8 gives an approach.

One cannot decide the error range solely from the observed data. Moreover, given two tests for the same data item, one
cannot tell which test has a narrower error range.

Remark 9. Let ai,aj 2 A be two tests for the same data item. For any x 2 U, the relationship between e(ai) and e(aj) cannot be
deduced from the test results.

Nevertheless, two tests for the same data item still meet certain constraints. One such constraint is given by the following
proposition.

Proposition 10. Let ai,aj 2 A be two tests for the same data item, for any x 2 U,
jaiðxÞ � ajðxÞj 6 eðaiÞ þ eðajÞ ð10Þ
Proof. Let a0(x) be the true value of x. a0(x) � e(ai) 6 ai(x) 6 a0(x) + e(ai), a0(x) � e(aj) 6 aj(x) 6 a0(x) + e(aj). Therefore Eq. (10)
holds. h

However, the reverse of Proposition 10 does not hold. According to Proposition 8, even if two tests satisfy Eq. (10), they
cannot be viewed as tests for the same data item.

The shapes of the neighborhoods are a line segment, a rectangle, and a cuboid for one-, two-, and three-dimensional
spaces, respectively. One- and two-dimensional blocks are depicted in Figs. 3 and 4. Naturally, the size of the neighborhood
depends on error ranges of tests, and more objects fall into the neighborhood of xi for wider error ranges.

According to Definition 3, every object belongs to its own neighborhood. Consequently, for any B # U, we have

1. "x 2 U, eB(x) – ;;
2. [x2UeB(x) = U.

In other words, the family of neighborhoods {eB(xi)jxi 2 U} forms a covering of the universe. This is formally given by the
following theorem.

Theorem 11. Let S = (U,A,V, I,e) be an IS-ER and B # A. The set {eB(xi)jxi 2 U} is a covering of U.
This is why we call the model error-range-based covering rough set.
A neighborhood relation NB induced by B # A on the universe U can be written as a relation matrix M(NB) = (rij)n � n,

where
rij ¼
1; xi 2 eBðxjÞ;
0; otherwise:

�
ð11Þ
From Definition 6, we know that neighborhood relations are a kind of tolerance relations, which satisfy the properties of
reflexivity and symmetry. Neighborhood relations draw the objects together for tolerance or indistinguishability from the
viewpoint of observational error. Correlated test sets can induce correlated neighborhood relations, the following theorem
indicates such a relationship.

Theorem 12. Let S = (U,A,V, I,e) be an IS-ER, NB be a neighborhood relation induced by B # A. Given B1,B2 # A, we have
NB1[B2 ¼ NB1 \ NB2 : ð12Þ
Proof. Given x1,x2 2 U,

NB1[B2 ðx1; x2Þ ¼ 1
,"a 2 B1 [B2, ja(xi) � a(xj)j 6 2 e(a).
,"a 2 B1, ja(xi) � a(xj)j 6 2e(a), and "a 2 B2, ja(xi) � a(xj)j 6 2e(a).
,NB1 ðx1; x2Þ ¼ 1 and NB2 ðx1; x2Þ ¼ 1.
This completes the proof. h
Fig. 3. One-dimensional neighborhood.

Fig. 4. Two-dimensional neighborhood.

54 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
3.2. Error-range-based covering rough set

In the following context, an error-range-based neighborhood will be called a neighborhood for simplicity. If all tests are
error free, namely, e(a) = 0 for any a 2 A, a neighborhood block degrades to an equivalence class. In this case, the objects
in a neighborhood are equivalent to each other and the covering rough set model degenerates to that described by Pawlak.
Therefore, the error-range-based covering rough set is a natural generalization of Pawlak’s rough set.

Note that some properties of this model look the same as those appearing in [19,20]. This is due to the fact that both mod-
els deal with neighborhood. However, since the data models are different, these properties should be restudied. As will be
pointed out later, some properties in [19] are no longer valid in the new model. Now we discuss some fundamental issues of
rough set in the new model.

Definition 13. Let S = (U,A,V, I,e) be an IS-ER, NB be a neighborhood relation induced by B # A. We call hU,NBi a
neighborhood approximation space. For any X # U, two subsets of objects, called lower and upper approximations of X in
hU,NBi, are defined as
NBX ¼ fxi 2 UjeBðxiÞ# Xg; ð13Þ
NBX ¼ fxi 2 UjeBðxiÞ \ X – ;g: ð14Þ
Obviously, NBX # X # NBX. The boundary region of X in the approximation space is defined as BNBX ¼ NBX � NBX. Note
that the neighborhood relation is always pertinent to the test set B. It cannot be independent as the one discussed in [19].

Generally, a finer covering (i.e., a covering with smaller blocks) is produced by a narrower error range, but a narrower
error range does not necessarily produce a finer covering. Here, the corresponding statement similar to Theorem 2 in [19]
does not hold. A counterexample is given below.

Example 14. Let a1,a2 2 A be two tests for sepal length, e(a1) = 0.01, and e(a2) = 0.02, therefore a1 has a narrower error range;
a be an error-free test for sepal length, its existence is simply to indicate the true value of the data item; x1,x2 2 U be two
plants of interest. a(x1) = 0.70, a1(x1) = 0.69, a2(x1) = 0.72, a(x2) = a1(x2) = a2(x2) = 0.67.

According to Definition 6, efa1gðx1Þ ¼ fx 2 Uja1ðxÞ 2 ½0:67;0:71�g, efa2gðx1Þ ¼ fx 2 Uja2ðxÞ 2 ½0:68; 0:76�g; x2 2 efa1gðx1Þ but
x2 R efa2gðx1Þ. In other words, with test a1, x2 is a neighbor of x1; while with test a2 it is not.

To produce a finer covering, we need a much narrower error range. We have the following theorem instead of Theorem 2
in [19].

Theorem 15. Let S = (U,A,V, I,e) be an information system with error ranges, ai,aj 2 A be two tests for the same data item where
eðaiÞ 6 1

3 eðajÞ. We have

1. "x 2 U, efaigðxÞ# efajgðxÞ.
2. "X # U, NfaigðXÞ � NfajgðXÞ, NfaigðXÞ# NfajgðXÞ.
Proof. (1) Let the true value of x on the test be a(x). efaigðxÞ ¼ fx0 2 Ujaiðx0Þ 2 ½aiðxÞ � 2eðaiÞ; aiðxÞ þ 2eðaiÞ�. Since
a(x) � e(ai) 6 ai(x) 6 a(x) + e(ai),
½aiðxÞ � 2eðaiÞ; aiðxÞ þ 2eðaiÞ�# ½aðxÞ � 3eðaiÞ; aðxÞ þ 3eðaiÞ�: ð15Þ
Alternatively, efajgðxÞ ¼ fx0 2 Ujaiðx0Þ 2 ½ajðxÞ � 2eðajÞ; ajðxÞ þ 2eðajÞ�g. Since a(x) � e(aj) 6 aj(x) 6 a(x) + e(aj),
½aðxÞ � eðajÞ; aðxÞ þ eðajÞ�# ½ajðxÞ � 2eðajÞ; ajðxÞ þ 2eðajÞ�: ð16Þ
Because eðaiÞ 6 1
3 eðajÞ, from Eqs. (15) and (16) we know that
½aiðxÞ � 2eðaiÞ; aiðxÞ þ 2eðaiÞ�# ½ajðxÞ � 2eðajÞ; ajðxÞ þ 2eðajÞ�: ð17Þ

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 55
According to Definition 6, efaigðxÞ# efajgðxÞ.
(2) Assuming efajgðxÞ# X, we have efaigðxÞ � X. Therefore we have x 2 NfaigðXÞ if x 2 NfajgðXÞ. However x is not necessarily

in NfajgðXÞ if we have x 2 NfaigðXÞ. Hence NfaigðXÞ � NfajgðXÞ. Similarly, we have NfaigðXÞ# NfajgðXÞ. h

For the purpose of decision making, we are often interested in each class of the decision system.

Definition 16. Let S = (U,C,D,V, I,e) be a DS-ER, and X1,X2, . . . ,XK be the object subsets with decisions 1 through K. The lower
and upper approximations of decision D with respect to B # C are defined as
NBD ¼
[K
i¼1

NBðXiÞ; ð18Þ

NBD ¼
[K
i¼1

NBðXiÞ: ð19Þ
The decision boundary region of D with respect to attributes B is defined as
BNBD ¼ NBD� NBD: ð20Þ

The lower approximation NBD is also denoted by POSB(D). One can prove that

1. NBD ¼ U;
2. POSB(D) [BNB(D) = U;
3. POSB(D) \ BNB(D) = ;.

In other words, the positive region contains objects that can be certainly classified into one class. The boundary region
contains objects that can be classified into two or more classes. Given a test set B, the size of the positive region reflects
the recognition power or characterizing power in the classification task. Therefore, the power, or more often called the sig-
nificance, of B to approximate D is defined as follows:

Definition 17. Let S = (U,C,D,V, I,e) be a DS-ER and B # C. The dependency degree of D to B is defined as
cBðDÞ ¼
jPOSBðDÞj
jUj ; ð21Þ
where j	j is the cardinality of a set.
We say D completely depends on C and the DS-ER is consistent if cC(D) = 1; otherwise, we say D depends on C in the de-

gree of cC(D). Next, we discuss the issue in a finer granule. In one particular neighborhood of an object, there may exist some
objects with different decision from the object. We propose the following definition to address this issue.

Definition 18. Let S = (U,C,D,V, I,e) be a DS-ER, B # C and x 2 U. Any y 2 eB(x) is called an inconsistent object in eB(x) if
D(y) – D(x). The set of inconsistent objects in eB(x) is
icBðxÞ ¼ fy 2 eBðxÞjDðyÞ– DðxÞg: ð22Þ

The number of inconsistent objects, namely jicB(x)j, is important in evaluating the characteristics of the neighborhood

block. It also influences the quality of rule induced by the block. From Definition 18 and Eq. (8) we know that
icBðxiÞ ¼
\
a2B

icfagðxiÞ: ð23Þ
Now that we have presented key concepts of the new model, the following example can help to explain these.
Table 4
The neighborhood of objects on different test sets.

x {a1} {a1,a2} {a1,a2,a3} {a1,a2,a3,a4}

x1 {x1,x2,x3,x5} {x1,x3} {x1,x3} {x1,x3}
x2 {x1,x2,x3} {x2,x3} {x2,x3} {x2,x3}
x3 {x1,x2,x3} {x1,x2,x3} {x1,x2,x3} {x1,x2,x3}
x4 {x4,x6,x9} {x4,x6,x9} {x4,x6} {x4,x6}
x5 {x1,x5,x8} {x5,x8} {x5} {x5}
x6 {x4,x6,x7} {x4,x6} {x4,x6} {x4,x6}
x7 {x6,x7,x8} {x7} {x7} {x7}
x8 {x5,x7,x8} {x5,x8} {x8} {x8}
x9 {x4,x9} {x4,x9} {x9} {x9}

56 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
Example 19. Given the decision system with error ranges as indicated by Tables 1 and 2. Let a1 = sepal-length, a2 = sepal-
width, a3 = petal-length, a4 = petal-width, and D = {d} = {class}. eB(x) is listed in Table 4, where B takes values listed as column
headers, and x takes values listed in each row.

Furthermore, U is divided into a set of equivalence classes by d. U/{d} = {{x1,x2,x3}, {x4,x5,x6}, {x7,x8,x9}}. In other words,
based on the decision attribute, the objects are grouped into three subsets: X1 = {x1,x2,x3}, X2 = {x4,x5,x6}, and X3 = {x7,x8,x9}.
NB(X) is listed in the first part of Table 5, where B takes values listed as column headers, and X takes values listed in each row.
Similarly, NBðXÞ is listed in the second part of Table 5.

From Table 5, the positive regions and boundary regions of U on different test sets are POSfa1gðfdgÞ ¼ fx2; x3g;
BNfa1gðfdgÞ ¼ fx1; x4; x5; x6; x7; x8; x9g, POSfa1 ;a2gðfdgÞ ¼ fx1; x2; x3; x6; x7g; BNfa1 ;a2gðfdgÞ ¼ fx4; x5; x8; x9g, POSfa1 ;a2;a3gðfdgÞ ¼
fx1; x2; x3; x4; x5; x6; x7; x8; x9g, BNfa1 ;a2 ;a3gðfdgÞ ¼ ;.

cfa1gðfdgÞ ¼
2
9 ; cfa1 ;a2gðfdgÞ ¼

5
9 ; cfa1 ;a2 ;a3gðfdgÞ ¼ 1. Therefore {a1,a2,a3} has the same approximating power as C, and {d}

depends on {a1,a2,a3} completely.
3.3. The minimal-test-cost reduct problem

Attribute reduction has been intensively studied by the rough set society. There are many extensions of the classical
rough set model [46], such as covering [71,72], decision-theoretical [32,66], variable-precision [73], and dominance-based
[15,21] rough set models. In [59], to preserve more information of the decision system, a few fuzzy reducts are also required
to produce fuzzy decision trees. A number of definitions of relative reducts exist [4,19,44,49] for different rough set models.
Their relationships on consistent and inconsistent decision systems are closely studied [36]. Similar to the classical definition
[44], we propose a new one based on the positive region in the new model.

Definition 20. Let S = (U,C,D,V, I,e) be a DS-ER. Any R # C is a decision-relative reduct iff:

1. POSR(D) = POSC(D), and
2. "a 2 R,POSR�{a} � POSR(D).

The first condition guarantees that the information in terms of the positive region is preserved, and the second condition
guarantees that no superfluous test is included. Therefore, a decision-relative reduct is a minimal test subset with the same
approximating power as the whole test set. With this concept, decision-relative core is naturally defined as follows.

Definition 21. Let Red(S) denote the set of all decision-relative reducts of a DS-ER S. Core(S) = \ Red(S) is called the core of S.
In other words, Core(S) contains those tests appearing in all decision-relative reducts. A decision-relative reduct (core) is

also called a reduct (core) for brevity. Definitions 20 and 21 have the same form as the classical one [43,44]. However, the
data model has changed and the definition of positive region is different; hence, the computation is totally different.

Super-reducts [41,67] are important in the reduct constructing process. These are also useful in the new model and are
therefore defined as follows.

Definition 22. Any Ru # C is a decision-relative super-reduct iff POSRu ðDÞ ¼ POSCðDÞ.
In other words, we can remove the second condition in Definition 20 to obtain this concept. We also have the following

proposition, which could serve as an alternative definition of super-reducts.

Proposition 23. Any Ru # C is a decision-relative super-reduct iff $R 2 Red(S) st. R # Ru.
From Definition 18 we know immediately that given B # C, x 2 POSC(D) if and only if icR(x) = ;. Consequently, we have the

following proposition, which can be employed as an alternative definition of a reduct.

Proposition 24. Let S = (U,C,D,V, I, e) be a DS-ER. Any R # C is a decision-relative reduct iff:

1. "x 2 POSC(D), icR(x) = ;, and
2. "a 2 R, $x 2 POSC(D), st. icR �{a}(x) – ;.
Table 5
Approximations of object subsets on different test sets.

X {a1} {a1,a2} {a1,a2,a3} {a1,a2,a3,a4}

NB(X) X1 {x2,x3} {x1,x2,x3} {x1,x2,x3} {x1,x2,x3}

X2 ; {x6} {x4,x5,x6} {x4,x5,x6}
X3 ; {x7} {x7,x8,x9} {x7,x8,x9}

NBðXÞ X1 {x1,x2,x3} {x1,x2,x3} {x1,x2,x3} {x1,x2,x3}
X2 {x1,x4,x5,x6,x7,x8,x9} {x4,x5,x6,x8,x9} {x4,x5,x6} {x4,x5,x6}
X3 {x4,x5,x6,x7,x8,x9} {x4,x5,x7,x8,x9} {x7,x8,x9} {x7,x8,x9}

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 57
This proposition will help us in reduction algorithm designing, as will be discussed in Section 4. Sometimes we are inter-
ested in those reducts with minimal number of tests.

Definition 25. Let Red(S) denote the set of all reducts of a DS-ER S. Any R 2 Red(S) where jRj = min{jR0jjR0 2 Red(S)} is called a
minimal reduct.

The problem of finding a minimal reduct is called the minimal reduct problem, or the reduct problem [52] for brevity. In
this work, we are interested in reducts with minimal test cost. Since TCI-DS-ER is a generalization of DS-ER, concepts in the
latter model are also applicable to the former one. We propose the following concept.

Definition 26. Let Red(S) denote the set of all reducts of a TCI-DS-ER S = (U,C,D,V, I,e,c). Any R 2 Red(S) where
c(R) = min{c(R0)jR0 2 Red(S)} is called a minimal test cost reduct.

The problem of finding such a reduct is called the minimal-test-cost reduct problem. Minimal-test-cost reducts are also
called optimal reducts throughout the paper. Accordingly, reducts with test cost no much higher than the optimal one will
be called sub-optimal reducts. Similar to the cases under other decision systems or neighborhood decision systems, the num-
ber of reducts is exponential with respect to the number of tests. The minimal-test-cost reduct problem under our new mod-
el is easier than the one studied in [37]. Therefore we need heuristic algorithms to deal with such problems. Before designing
these algorithms, we should study the monotonicity of the dependency function.

Theorem 27 (Type-1 monotonicity). Let S = (U,C,D,V, I, e) be a DS-ER, B1 � B2 # C. We have

1. "x 2 U, eB1 ðxÞ � eB2 ðxÞ, icB1 ðxÞ � icB2 ðxÞ;
2. NB1 � NB2 ;
3. 8X # U; NB1 ðXÞ � NB2 ðXÞ;
4. POSB1 ðDÞ# POSB2 ðDÞ, cB1

ðDÞ 6 cB2
ðDÞ.
Proof

(1) is known immediately from Definitions 6 and 18.
(2) follows from Eq. (11); we know that if rij = 1 for MðNB2 Þ then rij = 1 for MðNB1 Þ, although the reverse does not hold. Con-

sequently, NB1 � NB2 .
(3) and (4) can be proved similarly. h

Theorem 27 shows that dependency increases monotonically with tests, which means that by adding new tests the
dependency never decreases. Therefore we can employ the ‘‘depth-first-like’’ exhaustive algorithm [51] to construct optimal
reducts. We can also adopt the addition, deletion, or addition-deletion strategies [67] to design our heuristic reduction
algorithms.

3.4. Evaluation metrics

For brevity, the minimal-test-cost reduct will be called from hereon the optimal reduct. We can design many algorithms to
deal with the minimal-test-cost reduct problem. Consequently, we need a number of metrics to evaluate the performance of
these algorithms. We adopt the four metrics proposed in [37] for this purpose. These are finding optimal factor, exceeding fac-
tor, maximal exceeding factor, and average exceeding factor.

Given K datasets (TCS-DS-ERs), an attribute reduction algorithm A produces exactly one reduct for each dataset. Suppose
that k out of K reducts are optimal for respective datasets. The finding optimal factor (FOF) is defined as
op ¼ k
K
: ð24Þ
This metric is both qualitative and quantitative. First, it only counts optimal solutions. Second, it is computed statistically
on K datasets. In our experiments, we generated different test costs for the same DS-ER to produce different TCS-DS-ERs.
Therefore we have enough data to obtain the finding optimal factor for statistics purposes.

For a TCS-DS-ER, let R0 be an optimal reduct. The exceeding factor of a reduct R is
ef ðRÞ ¼ cðRÞ � cðR0Þ
cðR0Þ

: ð25Þ
The exceeding factor provides a quantitative metric to evaluate the performance of a reduct. It indicates the badness of a
reduct when it is not optimal. Naturally, if R is an optimal reduct, the exceeding factor is 0.

58 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
Suppose again the algorithm A is run on K datasets. On the ith dataset (1 6 i 6 K), the reduct produced by the algorithm is
denoted Ri. The maximal exceeding factor (MEF) is defined as
max
16i6K

ef ðRiÞ: ð26Þ
This shows the worst case of the algorithm given some data set. Although it relates to the performance of one particular re-
duct, it should be viewed as a statistical rather than an individual metric.

The average exceeding factor (AEF) is defined as

PK

i¼1ef ðRiÞ
K

: ð27Þ
Since it is averaged on K different test-cost-sensitive decision systems, it shows the overall performance of the algorithm
from solely a statistical perspective.

4. Algorithms

As mentioned in the last section, the minimal-test-cost reduct problem is more complex than the traditional reduct prob-
lem [43,52]. Hence heuristic algorithms are needed to find sub-optimal reducts for large datasets. To evaluate the perfor-
mance of a heuristic algorithm in terms of the quality of the solution, we should find an optimal reduct first.
Consequently, exhaustive algorithms are also needed.

This section presents for the new problem both exhaustive and heuristic algorithms: the exhaustive is based on back-
tracking where pruning techniques are crucial in reducing computation, whereas the heuristic has a framework similar to
that proposed in [37], though the algorithm is totally different due to the new data model. We also present the competition
approach [37], which is still valid for the new environment to enhance heuristic algorithms.

4.1. The backtrack reduction algorithm

A general algorithm for finding all (or some) solutions to some computational problem is backtracking, which we employ
to deal with minimal-test-cost reduct problems. As a general approach, we start from the empty set, and add tests one by one
until a super-reduct is obtained. Then we backtrack to a former step and obtain other super-reducts. This process can be
illustrated through a state space tree with exactly 2jCj nodes, each corresponding to a test subset. Therefore one can traverse
the tree in preorder and find the optimal solution in 2jCj steps. Example 28 illustrates the case for 4 tests.

Example 28. Let C = {a1,a2,a3,a4}. The state space tree is depicted in Fig. 5. The traversal of the tree produces test subsets in
the following sequence: ;, {a1}, {a1,a2}, {a1,a2,a3}, {a1,a2,a3,a4}, {a1,a2,a4}, {a1,a3}, {a1,a3,a4}, {a1,a4}, {a2}, {a2,a3}, {a2,a3,a4},
{a2,a4}, {a3}, {a3,a4}, {a4}.

This approach is, however, rather time consuming and unacceptable in most applications. The key issue in performing
this algorithm is how to prune the state space tree, or in other words, knowing when to stop searching a subtree if no better
solution exists inside. This section discusses this issue and presents three techniques for pruning.

If a test is redundant, we need not choose it in the process of reduct constructing. This consideration alludes to the first
technique in pruning the state space tree. Formally, given a test set B � C and a test a 2 C � B, if a is redundant with respect to
B, there does not exist a reduct R such that B [{a} # R. It is, however, not straightforward to tell whether or not a test is
redundant. Intuitively, one may expect that if POSB[{a}(D) = POSB(D), a is redundant with respect to B. The following example
shows that this condition is insufficient.

Example 29. A DS-ER is given by Table 6 and e(a1) = e(a2) = 0.1.POS;[fa1gðDÞ ¼ POS;ðDÞ ¼ ;. However, a1 should not be viewed
redundant with respect to ;. This is because POSfa1 ;a2gðDÞ ¼ U, and {a1,a2} is a reduct.
Fig. 5. The state space tree for C = {a1,a2,a3,a4}.

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 59
From Example 29, we observe the following. When the test set is ;, all objects should be viewed neighbors. Therefore
e;(x1) = U. However, when a1 is added to the test set, we have efa1gðx1Þ ¼ fx1; x2g � U. In other words, a1 is useful in decreas-
ing the neighborhood. In fact, if a test does not help decrease any neighborhood, it is definitely redundant. This is given by
the following lemma.

Lemma 30. Let S = (U,C,D,V, I,e) be a DS-ER, B � C and a 2 C � B. If "x 2 POSC(D) � POSB(D),
eBðxÞ ¼ eB[fagðxÞ; ð28Þ
any B0 where B [{a} # B0 # C is not a reduct.
In the lemma, we only consider neighborhoods of x 2 POSC(D) � POSB(D). This is because, by Definition 20, we only need to

preserve the positive region, and by Theorem 27 objects already in the positive region POSB(D) do not need to be reconsid-
ered. From the viewpoint of classification, the aim of choosing more tests is to remove inconsistent objects from neighbor-
hood blocks. Therefore it is important whether or not inconsistent objects are removed. We then have the following theorem.

Theorem 31. Let S = (U,C,D,V, I,e) be a DS-ER, B � C and a 2 C � B. If "x 2 POSC(D),
icBðxÞ ¼ icB[fagðxÞ; ð29Þ
any B0 where B [{a} # B0 # C is not a reduct.
Proof. Given B0 where B [{a} # B0 # C. If POSB0 ðDÞ – POSCðDÞ; B0 is not a reduct. Now suppose POSB0 ðDÞ ¼ POSCðDÞ and let
x 2 POSB0 ðDÞ. From Eqs. (23) and (29) we know that icB0�fagðxÞ ¼ icB0�fag�BðxÞ \ icBðxÞ ¼ icB0�fag�BðxÞ \ icB[fagðxÞ ¼ icB0 ðxÞ ¼ ;.
According to Proposition 24, B0 is not a reduct. h

Note that, unlike Lemma 30, we do not require x 2 POSC(D) � POSB(D). This is because "x 2 POSB(D), icB(x) = icB[{a}(x) = ;.
Since eB(x) = eB[{a}(x) gives icB(x) = icB[{a}(x), Lemma 30 is also proved.

Theorem 31 indicates which kind of tests are definitely redundant and therefore can be ignored in the process of reduct
constructing. With Theorem 31, we propose a backtrack algorithm to obtain one optimal reduct of a TCI-DS-ER. The algo-
rithm is listed in Algorithm 1. Before running the algorithm, we set B = ;, U0 = POSC(D), R = C, and l = 0.

Algorithm 1. A backtrack algorithm to one optimal reduct

Input: S = (U,C,D,V, I,e,c), selected tests B, last level boundary objects U0, current level test index lower bound l.
Output: An optimal reduct is stored in the global variable R.
Method: backtrack
1: for (i = l; i < jCj; i ++) do
2: if (c(B [{ai}) P c(R)) then
3: continue;//Not cheaper, no need to check, prune
4: end if
5: lessInconsistent = false;//Less inconsistent objects induced by ai?
6: U00 = ;;//Current level boundary objects
7: for (each x 2 U0) do
8: if (icB[faigðxÞ � icBðxÞ) then
9: lessInconsistent = true;
10: if ðicB[faigðxÞ – ;) then
11: U00 = U00 [{x};
12: end if
13: end if
14: end for
15: if (lessInconsistent == false) then
16: continue;//ai is not useful, prune
17: else
18: if (U00 = ;) then
19: R = B [{ai};//A better super-reduct
20: continue;
21: else
22: backtrack (U00, B [{ai}, i + 1);//Next level
23: end if
24: end if
25: end for

Table 6
The decision system for the counter-example.

U a1 a2 d

x1 0.41 0.81 Y
x2 0.42 0.42 N
x3 0.72 0.82 N
x4 0.73 0.41 Y

60 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
The first prune technique is implemented through the variable ‘lessInconsistent’ in the algorithm. Now we discuss the
other two techniques to prune the state space tree. R is employed to record currently best super-reduct. If another set R0 # C
does not have less test cost, there is no need to check R0. This technique is implemented in lines 2 through 4 of the algorithm.

Finally, tests are chosen in a bottom-up manner. That is, after including ai in B, the algorithm will not include any aj,
where j < i, in a deeper level. This technique cannot only prune the tree, but also guarantees the correctness of the algorithm.
In the process of running the algorithm, R might not be a reduct. Because U00 = ;, R must be a super-reduct. That is, it could be
a reduct, or a superset of a reduct. However, when the algorithm finishes R must be a reduct. This is because the cost of each
test is non-negative, hence a super-reduct will generally be replaced by a reduct. The reduct might be a subset of the super-
reduct, or another reduct with lower test cost.

4.2. The k-weighted heuristic reduction algorithm

To design a heuristic algorithm, we employ an algorithm framework very similar to the one proposed in [37]. The
algorithm is listed in Algorithm 2. It follows the typical addition-deletion strategies [67]. It constructs a super-reduct, then
reduces it to obtain a reduct. Core attributes are not computed since it is time consuming to obtain them in the new model.
The algorithm is essentially different from the one in [37] for the following reasons. First, the input S is a TCI-DS-ER instead of
a TCI-DS, and test results are numerical rather than nominal. Second, the computation of positive regions is totally
different.

Algorithm 2. A general test-cost-sensitive reduction algorithm
Input: S = (U,C,D,V, I,e,c)
Output: A reduct with sub-minimal test cost
Method: tcs-reduction
1: B = ;;

//Addition
2: CA = C;
3: while (POSB(D) – POSC(D)) do
4: For any a 2 CA, compute f(B,a,c);
5: Select a0 with the maximal f(B,a0,c);
6: B = B [{a0}; CA = CA � {a0};
7: end while

//Deletion
8: CD = B; sort attributes in CD according to respective test cost in a descending order;
9: while (CD – ;) do
10: CD = CD � {a0}, where a0 is the first element of CD;
11: if (POSB�fa0gðDÞ ¼ POSBðDÞ) them
12: B = B � {a0};
13: end if
14: end while
15: return B;

Lines 4 and 5 contain the key code of this framework. One can design different attribute significance functions to obtain
respective algorithms. As discussed through Example 29, a positive region is not good heuristic information to the new prob-
lem; nor is information gain [50], which has been often employed as the heuristic information for attribute reduction (see,
e.g., [37,58]), directly applicable.

According to Proposition 24 and Theorem 31, we know that jicB(x)j is useful in evaluating the quality of a neighborhood
block. Therefore, we propose the following concepts.

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 61
Definition 32. Let S = (U,C,D,V, I,e) be a DS-ER, B # C and x 2 U. The number of inconsistent objects in neighborhood eB(x) is
jicB(x)j. The total number of such objects with respect to U is
ncBðSÞ ¼
X
x2U

jicBðxÞj; ð30Þ
and with respect to the positive region is
pcBðSÞ ¼
X

x2POSC ðDÞ
jicBðxÞj: ð31Þ
According to Definitions 22 and 32, we know that B is a super-reduct if and only if pcB(S) = 0. Therefore we can replace the
condition POSB(D) – POSC(D) in Line 3 of the algorithm with pcB(S) > 0. This is easier to implement from the algorithmic view-
point. Finally, we propose the following k-weighted attribute significance function:
f ðB; ai; cðaiÞÞ ¼ ðjpcBðSÞj � jpcB[faigðSÞjÞ � cðaiÞk; ð32Þ
where ci is the test cost of ai, and k 6 0 is a user-specified parameter. Basically, the idea of introducing an exponential k is the
same as [37]. If k = 0, test costs are essentially not considered; whereas if k < 0, tests with lower cost have bigger significance.

Note that this attribute significance function fails if there are free tests, namely, tests with c(a) = 0. We can set the cost to a
small value (e.g., 0.01) to fix this problem. This issue seldom arises in applications because data collection and storing always
introduces certain costs. Therefore it is also reasonable to assume that free tests do not exist.

4.3. The competition approach

This approach has been discussed in [37] to obtain better results with more run-time. It is still valid in the new environ-
ment because there is no universally optimal k. Formally, let Rk be the reduct constructed by Algorithm 2 using the exponen-
tial k, and L be the set of user-specified k values. The minimal test cost
cL ¼min
k2L

cðRkÞ ð33Þ
can be obtained using all k values in L.
This approach requires the algorithm to run jLj times with different k values. Since the heuristic algorithm is fast, it is

acceptable for relatively small jLj. One can also run the program on jLj different computers in parallel. As will be shown
in Section 5.4, this simple approach can enhance the quality of the result significantly.

5. Experiments

In this section, we try by experimentation to answer the following questions; the first concerns the backtrack algorithm,
and three others the heuristic algorithm.

1. Is the backtrack algorithm efficient?
2. Is the heuristic algorithm appropriate for the problem?
3. Is there an optimal setting of k for any dataset?
4. Can the competition approach improve the quality of the result?

5.1. Data generation

We are interested in datasets where test costs and error ranges are available. These do exist in applications such as clinic
systems and hydrology systems, among others. Unfortunately, such datasets are not represented in the UCI library. Since the
main objective of this work is to study the performance of the reduction algorithm, rather than analyze the data for one par-
ticular application, we will create some data for experimentation. In this way, different parameters can be specified and dif-
ferent data distributions can be employed. Consequently, the reduction algorithm can be extensively studied. Unlike in
simpler models, data should not be randomly generated, but meet certain constraints. For example, for the same data item,
tests with narrower error ranges should be more expensive. In this subsection, we will discuss both the process and substan-
tial settings the generation of the data. Constraints mentioned above are met in this process.

First, we choose ten datasets from the UCI library, as listed in Table 7. In this way, the datasets, are not totally artificial,
having certain application domains. Each dataset should contain exactly one decision attribute, and no missing value should
exist. To make the data easier to handle, data items are normalized onto [0,1]. Missing values are directly set to 0.5.

Second, we produce the number of additional tests for one particular data item. We use the uniform distribution gener-
ator [37] to produce integers between 0 and k. That is, for each data item, we have 1 to (k + 1) measurement methods to
obtain it; k is set to less than 5 in our experiments. In real applications, one may find data that can be obtained through more
than 5 different approaches. However, commonly used ones are seldom more than 5. The number of tests for our experi-
ments is jC0 j in Table 7.

Table 7
Dataset information.

No. Name Domain jUj jCj jC0 j D = {d}

1 Iris Zoology 150 4 10 Class
2 Glass Manufacture 214 9 29 Type
3 Wine Agriculture 178 13 36 Class
4 Wpbc Clinic 198 33 50 Outcome
5 Wdbc Clinic 569 30 56 Diagnosis
6 Credit Commerce 690 15 26 Class
7 Image Graphics 210 19 34 Class
8 Iono Physics 351 34 62 Class
9 Liver Clinic 345 6 17 Selector

10 Diab Clinic 768 8 15 Class

62 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
Third, we produce the error ranges for each test. Since data are normalized, we set the error ranges to be ±0.005i for the
ith method. That is, we assume the error range of the original data is ±0.005. This assumption may not hold for the data.
However, unless specified by the original creator, the true error range is never known. The specified error ranges are reason-
able in applications, a data with an error more than 0.025 (the maximal observational error of the 5th method) seems not
quite useful. For such data, from Example 7, we know that two real values with 0.1 difference could be viewed the same.

Fourth, we produce ‘‘new’’ data subject to error ranges. Let a1 be the original (first) test, according to Proposition 8, we can
add a random number in [�0.005(i � 1), [�0.005(i � 1)] to a1(x) to produce ai(x), where x 2 U. The number is generated by
the uniform distribution generator [37]. In this way, ai is the new test with error rage ±0.005i. Note that if a datum smaller
than 0 (or larger than 1) is produced, it is set to 0 (or 1) directly so as not to exceed the boundary.

Fifth, we produce test costs, which are always represented by positive integers. Let a1 be the original (first) test and al is
the last test for one particular data item. c(al) is set to a random number in [1,100] subject to the uniform distribution. c(ai)
where 1 6 i < l is set to 2 � c(ai+1). This setting guarantees that tests with narrower error ranges are more expensive.

An example dataset generated by this approach is listed in Tables 8 and 9. We generate one DS-ER from each dataset, and
many TCS-DS-ERs from each DS-ER by setting different test costs. Note that by employing this approach we can generate as
many datasets as we need.

5.2. Efficiency of the backtrack algorithm

We study the efficiency of Algorithm 1 using two metrics. One is the number of steps the program performs on the state
space tree, i.e., the number of times the backtrack method is invoked. This metric is used to study the effectiveness of the
pruning techniques. The other is the run-time compared with heuristic algorithms. Specifically, we employ Algorithm 2
for the comparison, where k is set to �1.

For each dataset listed in Table 7, experiments are undertaken with 100 different test cost settings. The state space tree
size and the number of steps for Algorithm 1 are listed in Table 10. The average and maximal run time for both algorithms
are depicted in Fig. 6, where the unit of run-time is 1 ms.

From the results we note the following:

1. With the pruning techniques, the number of steps is very small compared with the state space tree size. Therefore the
pruning techniques are very effective.
Table 8
A decision system generated from Iris.

Plant SL SL-1 SL-2 SW PL PL-1 PL-2 PW PW-1 PW-2 Class

x0 0.23529 0.23274 0.22699 0.63636 0.09524 0.09969 0.10144 0.04762 0.04447 0.04852 Setosa
x1 0.17647 0.17657 0.17267 0.40909 0.09524 0.09599 0.10214 0.04762 0.04782 0.04662 Setosa
x2 0.11765 0.11945 0.12345 0.50000 0.07143 0.06763 0.07303 0.04762 0.04327 0.05402 Setosa
. . .

x50 0.79412 0.79747 0.79382 0.50000 0.54762 0.54777 0.55512 0.47619 0.48054 0.46699 Versicolor
x51 0.61765 0.61405 0.61985 0.50000 0.50000 0.50350 0.49920 0.52381 0.52566 0.52851 Versicolor
x52 0.76471 0.76861 0.76181 0.45455 0.59524 0.59209 0.60464 0.52381 0.52301 0.53351 Versicolor
. . .

x147 0.64706 0.64616 0.65396 0.40909 0.66667 0.66607 0.66427 0.76190 0.76645 0.7583 Virginica
x148 0.55882 0.56102 0.56172 0.59091 0.71429 0.71079 0.71709 0.90476 0.90316 0.91366 Virginica
x149 0.47059 0.47314 0.46729 0.40909 0.64286 0.64006 0.64186 0.66667 0.67037 0.66647 Virginica

SL stands for sepal length, SW stands for sepal width, PL stands for petal length, and PW stands for petal width.
1 and 2 after SL, PL, and PW indicate different revision of the original data.
There is only one method to obtain SW.

Table 9
A generated observation error vector and a generated test cost vector.

a SL SL-1 SL-2 SW PL PL-1 PL-2 PW PW-1 PW-2

e(a) 0.005 0.010 0.015 0.005 0.005 0.010 0.015 0.005 0.010 0.015
c(a) 52 26 13 80 372 186 93 360 180 90

Table 10
Number of steps for Algorithm 1.

Dataset Tree size Minimal steps Maximal steps Average steps

Iris 210 16 58 34
Glass 229 7702 218,972 56,591
Wine 236 10 446 82
Wpbc 250 19 345 106
Wdbc 256 63 3604 484
Credit 226 1004 141,868 16,274
Image 234 44 7551 907
Iono 262 129 6471 1023
Liver 217 194 1965 855
Diab 215 129 1146 462

Iris Glass Wine Wpbc Wdbc Credit Image Iono Liver Diab
10 0

101

102

103

104

105

106

M
ax

im
al

 ti
m

e

Algorithm 1
Algorithm 2

Iris Glass Wine Wpbc Wdbc Credit Image Iono Liver Diab
10 0

101

102

103

104

105
Av

er
ag

e
tim

e
Algorithm 1
Algorithm 2

(a) (b)

Fig. 6. Run time comparison: (a) maximal time, (b) average time.

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 63
2. In about half the datasets tested, the backtrack algorithm is comparable to, or at least not significantly worse than, the
heuristic algorithm. This is partly due to the fact that these datasets are not big.

3. The time expenditure does not simply rely on the dataset size. Glass and Credit are much smaller than Wdbc; however,
the run-times are longer.

4. he heuristic algorithm is more stable in terms of run-time. For example, on the Credit dataset, the maximal run-time is
only 1.7 times of the average one for Algorithm 2. In contrast, it is 7.3 times for Algorithm 1.

In summary, for small or medium sized datasets, the backtrack algorithm is a good choice to obtain the optimal reduct.
For large datasets, however, the heuristic algorithm must be employed.

5.3. Effectiveness of the heuristic algorithm

We let k = 0,�0.25,�0.5, . . . ,�2. The algorithm runs 4000 times with different test cost settings with each k setting on all
datasets except Glass. The backtrack algorithm takes rather a long time on Glass; hence, we only perform it 500 times. Re-
sults are depicted in Figs. 7–9. Data for k = 0 are not included in figures because respective results are incomparable to others.
We will discuss this issue in more detail in Section 5.4.

From the results we observe the following:

1. The quality of the results varies for different datasets. It is not simply related to the size of the dataset.
2. The quality of the results are not satisfactory in terms of the finding optimal factor. However, the average exceeding factor

is less than 0.1 in most cases. In other words, the results are acceptable.
3. There is no universally optimal setting of k. k = �0.5 might be a rational setting if no further information is available.

Although the results are generally acceptable, the performance of the algorithm should be improved. This issue will be
discussed further in Section 5.4.

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9
1

λ

FO
F

Iris
Wine
Wpbc
Wdbc
Glass

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

FO
F

Credit
Iono
Image
Diab
Liver

(a) (b)

Fig. 7. Finding optimal factor: (a) datasets 1–5, (b) datasets 6–10.

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

λ

M
EF

Iris
Wine
Wpbc
Wdbc
Glass

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

λ

M
EF

Credit
Iono
Image
Diab
Liver

(a) (b)

Fig. 8. Maximal exceeding factor: (a) datasets 1–5, (b) datasets 6–10.

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

λ

AE
F

Iris
Wine
Wpbc
Wdbc
Glass

−0.25 −0.5 −0.75 −1 −1.25 −1.5 −1.75 −2
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

λ

AE
F

Credit
Iono
Image
Diab
Liver

(a) (b)

Fig. 9. Average exceeding factor: (a) datasets 1–5, (b) datasets 6–10.

64 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
5.4. Comparison of three approaches

Here we compare the performance of the three approaches mentioned in Section 4. All three are based on Algorithm 2.
The first approach, called the non-weighting approach, is implemented by setting k = 0. The second approach, called the best
k approach, chooses the best k value as depicted in Figs. 7–9. The third approach is the competition approach discussed in
Section 4.3. L = {0,�0.25,�0.5, . . . ,�2}.

Table 11 lists results for all three approaches. We observe the following:

Table 11
Results for k = 0, k with the optimal setting, and k with a number of choices.

Dataset Finding optimal factor Maximal exceeding factor Average exceeding factor

k = 0 k = k⁄ k 2 L k = 0 k = k⁄ k 2 L k = 0 k = k⁄ k 2 L

Iris 0.0000 0.9375 0.9685 121.00 0.3511 0.2435 4.2058 0.0048 0.0019
Glass 0.0000 0.4270 0.6510 32.851 0.5526 0.5526 3.2732 0.0508 0.0219
Wine 0.0000 0.7138 0.7810 465.00 0.8182 0.6800 10.351 0.0466 0.0320
Wpbc 0.0000 0.6928 0.7543 70.500 0.7647 0.5000 9.2205 0.0526 0.0371
Wdbc 0.0000 0.5995 0.7305 45.125 0.5714 0.4583 6.3530 0.0548 0.0295
Credit 0.0000 0.7300 0.9020 4.1842 0.3974 0.1845 0.4018 0.0191 0.0050
Image 0.0000 0.6070 0.7132 32.428 1.0000 0.6000 2.1375 0.0593 0.0341
Iono 0.0000 0.5700 0.7170 90.833 0.9333 0.5806 11.482 0.0626 0.0313
Liver 0.0000 0.5155 0.5990 9.5747 0.4103 0.3383 1.8969 0.0423 0.0274
Diab 0.0000 0.5642 0.6892 9.4706 0.6018 0.4915 1.6631 0.0529 0.0300

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 65
1. The non-weighting approach never finds the optimal reduct. It is unacceptable from all three metrics. This is because
without considering test costs, the algorithm tends to choose tests with narrower error ranges, which are more expensive.

2. The competition approach significantly improves the quality of results especially in datasets where the optimal reduct is
hard to find. For example, on the Glass dataset, the finding optimal factor of the competition approach is 0.6510, 0.224
better than the best k setting.

In general, the competition approach is a simple and effective method to improve the performance of the algorithm. From
the application point of view, it is also much easier to specify L than to guess the best k. We can specify as many k values as
we want, as long as run-times are acceptable.
6. Conclusions and further works

In this paper, we addressed the TARER problem covering data model, computational model, problem and algorithm.
Experimental results indicate the efficiency of the backtrack algorithm, the effectiveness of the k-weighting heuristic algo-
rithm, and the significance of the competition approach in terms of performance improvement. In the future, much work
needs to be undertaken at four levels:

1. At the data model level, new data models addressing common-test-cost [38], different error ranges, and other types of
uncertainty [1,7] can be built. These models are generally more complex than that presented in this work. These could
have some interesting areas of application.

2. At the computational model level, error-range-based covering rough sets deserve more investigation. This paper only
considered concepts closely related to attribute reduction. Other aspects of the theory should be studied.

3. At the problem level, other problems such as rule synthesis should be defined. Moreover, with different data models,
attribute reduction problems should also be reconsidered.

4. At the algorithm level, other algorithms should be developed. One could design discernibility-matrix-based exhaustive
algorithms [52], entropy-based heuristic algorithms [34,54,57], genetic algorithms [31,61], or set-covering-based algo-
rithms [8].

In summary, this study suggests new research trends concerning covering rough set theory, the attribute reduction prob-
lem, and cost-sensitive learning applications.

Acknowledgements

We are grateful to the anonymous reviewers for their valuable comments and suggestions. This work is in part supported
by National Science Foundation of China under Grant No. 61170128, the Natural Science Foundation of Fujian Province, Chi-
na under Grant No. 2011J01374 and the Education Department of Fujian Province under Grant No. JA11176.

References

[1] C.C. Aggarwal, On density based transforms for uncertain data mining, in: Proceedings of IEEE 23rd International Conference on Data Engineering,
2007, pp. 866–875.

[2] A. Bargiela, W. Pedrycz, Granular Computing: An Introduction, Kluwer Academic Publishers, Boston, 2002.
[3] W. Bartol, J. Miro, K. Pioro, F. Rossello, On the coverings by tolerance classes, Information Sciences 166 (1–4) (2004) 193–211.
[4] J.G. Bazan, A. Skowron, Dynamic reducts as a tool for extracting laws from decision tables, in: Proceedings of the 8th International Symposium on

Methodologies for Intelligent Systems, 1994, pp. 346–355.
[5] D. Bianucci, G. Cattaneo, D. Ciucci, Entropies and co-entropies of coverings with application to incomplete information systems, Fundamenta

Informaticae 75 (1–4) (2007) 77–105.

66 F. Min, W. Zhu / Information Sciences 211 (2012) 48–67
[6] X.Y. Chai, L. Deng, Q. Yang, C.X. Ling, Test-cost sensitive Naïve Bayes classification, in: Proceedings of the 5th International Conference on Data Mining,
2004, pp. 51–58.

[7] M. Chau, R. Cheng, B. Kao, J. Ng, Uncertain data mining: an example in clustering location data, in: Proceedings of Advances in Knowledge Discovery
and Data Mining, LNCS, vol. 3918, 2006, pp. 199–204.

[8] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of Operations Research 4 (3) (1979) 233–235.
[9] T.M. Cover, Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13 (1967) 21–27.

[10] J. Dai, Rough 3-valued algebras, Information Sciences 178 (8) (2008) 1986–1996.
[11] J. Dai, Q. Xu, Approximations and uncertainty measures in incomplete information systems, Information Sciences 198 (1) (2012) 62–80.
[12] M. Diker, Textural approach to generalized rough sets based on relations, Information Sciences 180 (8) (2010) 1418–1433.
[13] J. Du, Z.H. Cai, C.X. Ling, Cost-sensitive decision trees with pre-pruning, in: Proceedings of Canadian AI, No. 4509 in LNAI, 2007, pp. 171–179.
[14] Y. Du, Q. Hu, P. Zhu, P. Ma, Rule learning for classification based on neighborhood covering reduction, Information Sciences 181 (24) (2011) 5457–5467.
[15] S. Greco, B. Matarazzo, R. Slowinski, J. Stefanowski, Variable consistency model of dominance-based rough sets approach., in: Proceedings of Rough

Sets and Current Trends in Computing, LNCS, vol. 2005, 2000, pp. 170–181.
[16] H. He, F. Min, Accumulated cost based test-cost-sensitive attribute reduction, in: Proceedings of the 13th International Conference on Rough Sets,

Fuzzy Sets, Data Mining and Granular Computing, LNAI, vol. 6743, 2011, pp. 244–247.
[17] H. He, F. Min, W. Zhu, Attribute reduction in test-cost-sensitive decision systems with common-test-costs, in: Proceedings of the 3rd International

Conference on Machine Learning and Computing, vol. 1, 2011, pp. 432–436.
[18] Q. Hu, W. Pedrycz, D. Yu, J. Lang, Selecting discrete and continuous features based on neighborhood decision error minimization, IEEE Transactions on

Systems, Man, and Cybernetics – Part B: Cybernetics 40 (1) (2010) 37–50.
[19] Q. Hu, D. Yu, J. Liu, C. Wu, Neighborhood rough set based heterogeneous feature subset selection, Information Sciences 178 (18) (2008) 3577–3594.
[20] Q. Hu, D. Yu, Z. Xie, Numerical attribute reduction based on neighborhood granulation and rough approximation (in chinese), Journal of Software 19 (3)

(2008) 640–649.
[21] B. Huang, H.-X. Li, D.-K. Wei, Dominance-based rough set model in intuitionistic fuzzy information systems, Knowledge-Based Systems 28 (2012) 115–

123.
[22] J. Järvinen, Approximations and rough sets based on tolerances, in: Proceedings of Rough Sets and Current Trends in Computing, LNCS, vol. 2005, 2000,

pp. 182–189.
[23] W. Jin, A.K. Tung, J. Han, W. Wang, Ranking outliers using symmetric neighborhood relationship, in: Proceedings of the 10th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, 2006, pp. 577–593.
[24] M. Kukar, I. Kononenko, Cost-sensitive learning with neural networks, in: Proceedings of the 13th European Conference on Artificial Intelligence, 1998,

pp. 445–449.
[25] H. Li, M. Wang, X. Zhou, J. Zhao, An interval set model for learning rules from incomplete information table, International Journal of Approximate

Reasoning 53 (2012) 24–37.
[26] T.Y. Lin, Neighborhood systems and approximation in database and knowledge base systems, in: Proceedings of the 4th International Symposium on

Methodologies of Intelligent Systems, ACM, 1989, pp. 75–86.
[27] T.Y. Lin, Granular computing on binary relations-analysis of conflict and chinese wall security policy, in: Proceedings of Rough Sets and Current Trends

in Computing, LNAI, vol. 2475, 2002, pp. 296–299.
[28] T.Y. Lin, Granular computing – structures, representations, and applications, in: Lecture Notes in Artificial Intelligence, vol. 2639, 2003, pp. 16–24.
[29] T.Y. Lin, Neighborhood systems: mathematical models of information granulations, in: Proceedings of IEEE International Conference on Systems, Man

& Cybernetics, 2003, pp. 75–86.
[30] C.X. Ling, Q. Yang, J.N. Wang, S.C. Zhang, Decision trees with minimal costs, in: Proceedings of the 21st International Conference on Machine learning,

2004, p. 69.
[31] P. Lingras, C. Davies, Rough genetic algorithms, in: Lecture Notes in Computer Science, vol. 1711, 1999, pp. 38–46.
[32] D. Liu, T.R. Li, D. Ruan, Probabilistic model criteria with decision-theoretic Rough sets, Information Sciences 181 (2011) 3709–3722.
[33] G. Liu, Generalized rough sets over fuzzy lattices, Information Sciences 178 (6) (2008) 1651–1662.
[34] Q. Liu, F. Li, F. Min, M. Ye, G. Yang, An efficient reduction algorithm based on new conditional information entropy, Control and Decision 20 (8) (2005)

878–882 (in Chinese).
[35] Z. Meng, Z. Shi, A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets, Information Sciences

179 (16) (2009) 2774–2793.
[36] D.Q. Miao, Y. Zhao, Y.Y. Yao, H.X. Li, F.F. Xu, Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model, Information

Sciences 179 (24) (2009) 4140–4150.
[37] F. Min, H. He, Y. Qian, W. Zhu, Test-cost-sensitive attribute reduction, Information Sciences 181 (2011) 4928–4942.
[38] F. Min, Q. Liu, A hierarchical model for test-cost-sensitive decision systems, Information Sciences 179 (2009) 2442–2452.
[39] F. Min, W. Zhu, Attribute reduction with test cost constraint, Journal of Electronic Science and Technology of China 9 (2) (2011) 97–102.
[40] F. Min, W. Zhu, Optimal sub-reducts in the dynamic environment, in: Proceedings of IEEE International Conference on Granular Computing, 2011, pp.

457–462.
[41] F. Min, W. Zhu, Optimal sub-reducts with test cost constraint, in: Proceedings of Rough Set and Knowledge Technology, LNAI, vol. 6954, 2011, pp. 57–

62.
[42] F. Min, W. Zhu, H. Zhao, G. Pan, Coser: Cost-senstive rough sets, 2011. <http://grc.fjzs.edu.cn/
fmin/coser/>.
[43] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (1982) 341–356.
[44] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, 1991.
[45] Z. Pawlak, Rough set theory and its applications, Journal of Telecommunications and Information Technology 3 (2002) 7–10.
[46] Z. Pawlak, Rough sets and intelligent data analysis, Information Sciences 147 (12) (2002) 1–12.
[47] J.F. Peters, Near sets. General theory about nearness of objects, Applied Mathematical Sciences 1 (53) (2007) 2609–2629.
[48] L. Polkowski, A set theory for rough sets: toward a formal calculus of vague, Fundamenta Informaticae 71 (1) (2006) 49–61.
[49] Y. Qian, J. Liang, W. Pedrycz, C. Dang, Positive approximation: an accelerator for attribute reduction in rough set theory, Artificial Intelligence 174 (9–

10) (2010) 597–618.
[50] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81–106.
[51] S. Romański, Operations on families of sets for exhaustive search given a monotonic function, in: Proceedings of the 3rd International Conference on

Data and Knowledge Bases, 1988, pp. 28–30.
[52] A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems, in: Intelligent Decision Support, 1992, pp. 331–362.
[53] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fundamenta Informaticae 27 (1996) 245–253.
[54] D. Śle�zak, Approximate entropy reducts, Fundamenta Informaticae 53 (3–4) (2002) 365–390.
[55] P.D. Turney, Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence

Research 2 (1995) 369–409.
[56] P.D. Turney, Types of cost in inductive concept learning, in: Proceedings of the Workshop on Cost-Sensitive Learning at the 17th ICML, 2000, pp. 1–7.
[57] G. Wang, Attribute core of decision table, in: Proceedings of Rough Sets and Current Trends in Computing, LNCS, vol. 2475, 2002, pp. 213–217.
[58] G. Wang, H. Yu, D. Yang, Decision table reduction based on conditional information entropy, Chinese Journal of Computers 2 (7) (2002) 759–766.
[59] X.-Z. Wang, J.-H. Zhai, S.-X. Lu, Induction of multiple fuzzy decision trees based on rough set technique, Information Sciences 178 (2008) 3188–3202.
[60] W. Wei, J. Liang, Y. Qian, A comparative study of rough sets for hybrid data, Information Sciences 190 (2012) 1–16.

http://grc.fjzs.edu.cn/~fmin/coser/
http://grc.fjzs.edu.cn/~fmin/coser/

F. Min, W. Zhu / Information Sciences 211 (2012) 48–67 67
[61] J. Wróblewski, Finding minimal reducts using genetic algorithms, in: Proceedings of International Workshop on Rough Sets Soft Computing at Second
Annual Joint Conference on Information Sciences, 1995, pp. 186–189.

[62] Q. Yang, X. Wu, 10 challenging problems in data mining research, International Journal of Information Technology and Decision Making 5 (4) (2006)
597–604.

[63] Y.Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences 111 (1–4) (1998) 239–
259.

[64] Y.Y. Yao, A partition model of granular computing, Lecture Notes in Computer Science 3100 (2004) 232–253.
[65] Y.Y. Yao, S. Wong, A decision theoretic framework for approximating concepts, International Journal of Man–Machine Studies 37 (1992) 793–809.
[66] Y.Y. Yao, Y. Zhao, Attribute reduction in decision-theoretic rough set models, Information Sciences 178 (17) (2008) 3356–3373.
[67] Y.Y. Yao, Y. Zhao, J. Wang, On reduct construction algorithms, in: Proceedings of Rough Set and Knowledge Technology, LNAI, vol. 4062, 2006, pp. 297–

304.
[68] Z. Zhou, X. Liu, Training cost-sensitive neural networks with methods addressing the class imbalance problem, IEEE Transactions on Knowledge and

Data Engineering 18 (1) (2006) 63–77.
[69] W. Zhu, Basic concepts in covering-based rough sets, in: Proceedings of the International Conference on Natural Computation, vol. 1, 2007, pp. 283–

286.
[70] W. Zhu, Generalized rough sets based on relations, Information Sciences 177 (22) (2007) 4997–5011.
[71] W. Zhu, Topological approaches to covering rough sets, Information Sciences 177 (6) (2007) 1499–1508.
[72] W. Zhu, F. Wang, Reduction and axiomization of covering generalized rough sets, Information Sciences 152 (1) (2003) 217–230.
[73] W. Ziarko, Variable precision rough set model, Journal of Computer and System Sciences 46 (1) (1993) 39–59.

	Attribute reduction of data with error ranges and test costs
	1 Introduction
	2 Data models
	2.1 Information systems and decision systems
	2.2 Information systems and decision systems with error ranges
	2.3 Test-cost-independent decision system with error ranges

	3 Error-range-based covering rough set
	3.1 Error-range-based covering
	3.2 Error-range-based covering rough set
	3.3 The minimal-test-cost reduct problem
	3.4 Evaluation metrics

	4 Algorithms
	4.1 The backtrack reduction algorithm
	4.2 The λ-weighted heuristic reduction algorithm
	4.3 The competition approach

	5 Experiments
	5.1 Data generation
	5.2 Efficiency of the backtrack algorithm
	5.3 Effectiveness of the heuristic algorithm
	5.4 Comparison of three approaches

	6 Conclusions and further works
	Acknowledgements
	References

